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ABSTRACT

Cytochrome c is a central protein that plays a role in triggering apoptosis in cell induced by any
agent either drug or plant extracts. Here, we present data of an active antiproliferative agent 7,3,5'-
trinydroxyflavanone (3HFD) that is elucidated from the plant Hydnophytum formicarium showed to
trigger cytochrome c release in treated MCF-7 cell. By performing Western Blot, cytochrome ¢ was
seen to be elevated throughout the experiments. The increase level of cytochrome ¢ was confirmed by
ELISA and remarked as the beginning of the caspase cascade without altering caspase-8 level. In
conclusion, the 3HFD seems to significantly induced apoptosis via mitochondria pathway as reflected

by up regulation of cytochrome c.
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INTRODUCTION

Cytochrome c is an ancient protein,
developed early in the evolution of life. The familiar
function of cytochrome c, is its role as a carrier of
electrons (Reed, 1997). Itis a small, mobile molecule
that shuttles electrons through the last step of
aerobic energy production. These electrons are
obtained from the dATP, which are shuttled through
a series of proton pumping proteins (Yang et al.,
1997). Cytochrome c shuttles these electrons in the
narrow space between the two mitochondrial
membranes. It diffuses from protein to protein,
picking up electrons from one huge membrane-
bound complex and placing them at their final
destination on another (Liu et al., 1996).

Cytochrome ¢ and the mitochondria play
a central role in apoptosis, signaling the cell to begin
the process of programmed cell death (Goldstein
et al., 2005a; Goa et al., 2001). Apoptosis is

triggered when something is amiss with the cell:
DNA damage, detachment from neighbors, growth
factor deprivations, infection, or a host of other signs.
The cell then initiates one or more cascades of
signaling proteins that spread the message through
the cell and ultimately orchestrate a controlled self-
destruction. Apoptosis is essential in many natural
processes, such as the coordinated growth and
selective pruning that shapes a growing embryo. If
the system is corrupted, however, the
consequences are dire, leading to degenerative
diseases if overactive and allowing the growth of
cancers if blocked (Goldstein et al., 2005b). Although
studies of plant-derived anti-cancer agents are fast-
progressing, but the precise mechanism of plant-
derived agents on the inhibition of cancer cell growth
is still not completely understood. Previous studies
reported that cytochrome c¢ play as central role in
apoptosis regulation, and contribute significantly to
the pathogenesis of cancer.
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In this study, we tested the 7, 3’, 5’-
trinydroxyflavanone (3HFD) that is elucidated from
the plant Hydnophytum formicarium (Hasmah et al.
2008) of the rubiaceae family which is native to
Malaysia and Indonesia (Huxley, 1992) for
cytochrome c¢ signaling on human breast cancer
cell line, MCF-7. This compound was reported to
exert potent antiproliferative activity towards MCF-
7 cell without affecting normal cell line, MDBK
(Hasmabh et al. 2008). Previously chloroform extract
of this plant was reported to have anti multidrug
resistant towards mouse lymphoma cell lines
transfected with human mdr1 gene with moderate
effect (Hasmah et al. 2004). Here in this study, we
treated MCF-7 cells with the concentration of 3HFD
as reported by Hasmah et al. (2008) to observe the
expression of cytochrome c¢ with regard to the
involvement of procaspase-8. We also performed
the ELISA analysis to figure out the concentration
of cytochrome c release in treated and untreated
control cells.

MATERIALS AND METHOD

Cell culture

MCF-7 human mammary carcinoma cells
were obtained from the American Type Culture
Collection (ATCC) and maintained in DMEM
supplemented with 10% fetal bovine serum and 2
mM glutamine (Lee et al., 2003).

Isolation of cytosolic fractions

Cytosolic extracts were prepared as
previously described by Yang et al. (1997). Briefly,
treated cells were harvested by centrifugation and
washed with ice-cold phosphate-buffered saline and
re-suspended in 5 volumes of extraction buffer
containing 250 mM sucrose. Cells were
homogenized and the homogenates were
centrifuged twice at 750 x g for 10 min at 4°C. The
supernatant was then centrifuged at 10,000 x g for
15 min at 4°C, and the resulting mitochondrial pellets
were discarded. The supernatant was then dissolved
in electrophoresis sample buffer and used for
Western blotting.

Western Blotting

After electrophoresis, proteins were blotted
onto polivynyl-difluoride membranes (PolyScreen,
Nen Life Science). Membranes were dried, pre-

blocked with 5% non-fat milk in phosphate-buffered
saline and 0.1% Tween-20, then incubated with a
primary antibody for caspase-8 and cytochrome ¢
(Clone 7H8.2C12) (all from Pharmingen), and
detected with horseradish peroxidase-labeled
antibodies to rabbit or mouse IgG. Following
exposure on a Kodak BIOMAX x-ray film,
densitometry analysis was done with a GS 670
Imaging Densitometer with the software Molecular
Analyst (Bio Rad). Blots were stripped with Re-Blot
Plus (Chemicon) before reprobing with B-actin
antibody to determine equal loading.

ELISA analysis of cytochrome ¢

Quantification of cytochrome ¢
concentration was assayed by means of ELISA
analysis according to User Protocol QIA74 provided
in the test kit by Qiagen. The assay was done
according to the manufacturer’s instructions. Briefly,
MCF-7 cells were treated with 3HFD at 9 pg/ml
3HFD for 0, 3, 6, 12 and 24 in 5% CO, at 37 °C.
Control were treated with 1% DMSO. After the
treatment period, cells were counted and then
pelleted at 1,500 rpm for 10 min. Cells were then
re-suspended in chilled Cell Lysis Buffer and
incubated at room temperature before centrifugation
at 1000 x g for 15 min. The supernatant (cytosolic
extract) was then diluted for 5 times and assayed
immediately. Alternatively, supernatant could be
aliquot and stored at -80 °C. The protein
concentration for each sample set was then assayed
using standard protocols. Assay mixture was
prepared in a 96-well plate and mixed with calibrator
diluents, sample and standard and shielded with
provided plastic cover and left for 2 hours at room
temperature. After 2 hours, 96 well plates were
washed with wash buffer and dried. Lastly,
cytochrome ¢ conjugate solution were added and
incubated for 2 hours, washed and mixed with
substrate solution for 30 minutes followed by adding
stop solution and mixed well. The mixture was read
with a Dynex MRX microtiter plate reader at 450
nm and 540 nm. The concentrations were
determined from regression equation of standard
curve times dilution factor.

RESULTS

During apoptosis, initiator caspases are
activated in response to proapoptotic signals (Diaz
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et al., 2003). By SDS-PAGE and subsequent
Western Blot analysis with a caspase-8 specific
antibody, it was found that 3HFD treatment did not
lead to the activation of the initiator caspase-8.
Procaspase-8, expressed in two functionally active
isoforms, caspase-8a and caspase-8b (Diaz et al.,
2003) was not processed. From immunoblotting, the

two bands observed were the 55/50-kDa
procaspase-8 isoforms (Figure 1) similarly as
reported by Sun et al. (1999) and Dirsch et al. (2001)
and the active p18 subunit could not be detected.
As processing of this caspase did not occur, it is
possible that the other initiator caspase, caspase-9
may be involved in 3HFD-induced apoptosis.
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Fig. 1: Proteins from MCF-7 cells treated with 9ug/ml for the indicated times were resolved on 12% SDS-PAGE and
submitted to Western Blotting with an anti-procaspase-8 antibody. Two bands were observed, corresponding to the
uncleaved 55/50-kDa procaspase-8 isoforms. The active p18 subunit was not detected. The cytosolic fractions of MCF-7
cells treated with 9ug/ml were also resolved on 15% SDS-PAGE and submitted to immunoblotting with the cytochrome ¢
antibody (Clone 7H8.2C12). Increasing amounts of cytochrome cwere detected in the cytosol in a time-dependent
manner. All blots were then washed and re-probed with &-actin to confirm equal loading. The concentration value
represented as means + SEM, P<0.05 of three independence experiments.
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Fig. 2: MCF-7 treated with 9ug/ml 3HFD was assayed for cytochrome ¢ concentration.
Level of cytochrome c increased as measured with ELISA method using ELISA
Cytochrome c kit (QIAGEN) in time dependence manner. The concentration value
represented as means + SEM, P<0.05 of three independence experiments.

Cytochrome ¢ seems to be a major trigger
for the assembly of this complex, and various
studies have found that cytochrome c is released
from the mitochondria into the cytosol during cell
death (Li et al. 1997). When cytochrome c levels in
the cytosol were examined, we detected increasing
levels in the 3HFD-treated MCF-7 cells (Figure 1).
Untreated control cells did not exhibit similar high
levels of cytochrome ¢, indicating that the release
of cytochrome ¢ from the mitochondria into the
cytosol was an effect of 3HFD treatment.

We further examined the concentration of
cytochrome ¢ by means of enzymatic assay through
the same experimental period. The level of
cytochrome ¢ concentration increased in time
dependence manner. This result supported the
Western Blot analysis and high peaks were
observed at 24 hours treatments (Figure 2).

DISCUSSION

Western Blott and ELISA analysis has
evidenced the importance of cytochrome ¢ in MCF-
7 treated 3HFD apoptosis. These data provided
basis for 3HFD mechanism of action through
mitochondria pathway. Release of cytochrome c will
triggered a formation of activation of caspase
cascade to produce apoptotic characteristic such
as nuclear condensation, substrate degradation and
fragmentation DNA as suggested by Slee et al.
(1999). Slee et al. (1999) also reported that

cytochrome c involves in activation of downstream
caspases (kaspase-2, -8 -9 dan -10), and upstream
caspases (kaspase-3, -6 dan -7). Liu et al. (1996)
concluded that cytochrome c will trigger the
processing of casopase 3. Reed (1997) suggested
that cytochrome c is a central role of apoptosis that
released from mitochondria. and function as central
controller of apoptosis. The exact mechanism
involved in cytochrome c release is still undiscovered
(Renz et al., 2001).

Determination of cytochrome c placement
is also important to support this apoptosis precursor
through Western blot analysis. In this study, we
evaluated the concentration of cytochrome ¢ in
treated cells using ELISA assay to support the
elevated expression in Western Blot analysis. Han
et al. (2003) reported the evidenced of cytochrome
c in cell cytosol through immunoflourescene libeling
with FITC cytochrome c specific antibody. Luetjens
et al. (2001) reported the multiple kinetic release of
cytochrome ¢ in MCF-7 with caspase-3 drug
induced apoptosis (staurosporin and valiomysin)
and tumour necrosis factor TNF-alfa. Bax or Bid
from Bcl-2 family was evidenced to influence the
cytochrome c release from mitochondria through
the phosphorilation process (Jirgensmeier et al.,
1998; Li et al., 1998; Luo et al., 1998). Smac/Diablo
also reported to influence the cytochrome c release
(Carson et al., 2002; Kandasamy et al., 2003) in
prostate cancer cell (Ln CaP). This is due to the
needs of Smac to combat epidermal growth inhibitor.
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Caspase-8 was reported to influence
cytochrome c release through Bid processing and
triggered the activation of caspase 9 (Granville et
al., 1999). However, in this study, caspase-8 was
not processed. This finding supported study by
Scaffidi et al. (1999) which stated that caspase-8
was not activated in early stage of caspase
activation in CD95 signaling. This is because the
existing of two types of different cell which were:
type | involve caspase-8 activation at early stage
and type Il occurred at late stage of aggregation
involved mitochondria. Dirsch et al. (2001) and Tang
et al. (2000) also reported the inactivation of
procaspase 8 in MCF-7 treated with helenalin and
staurosporin respectively.

Previous reports have found that MCF-7
cells are relatively insensitive to many
chemotherapeutic agents due to the absence of
caspase-3 (Yang et al., 2001). Our studies here have

shown that the mechanism for apoptosis is
functional in MCF-7 and 3HFD is able to trigger
cytochrome c release through mitochondria
pathway. Therefore, finding new therapeutic agents
that induce tumor cells apoptosis in a manner
independent of caspase-3 with promoting
cytochrome c release may have important clinical
implications. By releasing cytochrome ¢ without
requiring caspase-3, 3HFD may evoke an apoptotic
pathway different from clinical oncology drugs such
as doxorubucin and etoposide (Yang et al., 2001)
thus making it a promising agent for combination
chemotherapy that merits further study.
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