Biogenic Synthesis of Bi-Metallic (Zn-Cu) Nanoparticles by Leaf Extract of Citrus Limon and Evaluation of its Antibiofilm Activity Against E. Coli
Tooba Mazhar, Vikas Shrivastava and Rajesh Singh Tomar*Amity Institute of Biotechnology, Amity University Madhya Pradesh, Gwalior, M.P. India
Corresponding Author E-mail: rstomar@amity.edu
Abstract: The rapid hike in the usage of metallic as well as non-metallic nanoparticles demands their increased synthesis. In our study we synthesized bimetallic Zn-Cu nanoparticles using the greener route i.e. dry leaves powder of Citrus limon as it is environment-friendly, cost-effective, has a high surface area to volume ratio and hence superior over monometallic nanoparticles synthesized via physical or chemical approach. UTI is the most common nosocomial infection and the bacteria associated with it usually is E. coli. This pathogen forms biofilm and makes it difficult to treat the disease in less time. Hence, antimicrobial as well as antibiofilm activity of synthesized bimetallic nanoparticles was checked against E. coli. Our experimental procedure involved the preparation of ethanolic plant extract using dry leaf powder followed by synthesis of bimetallic nanoparticles. Particles were then characterized by using biophysical techniques such as FTIR, Powder-XRD and SEM-EDX. Next, we identified bacteria isolated from environment and hospital source and prepared their pure cultures. Lastly, we carried out the antibacterial and antibiofilm activity of synthesized nanoparticles against isolated E. coli. Particles showed the colour change from blue to green upon synthesis and were found to be a triclinic primitive type with an average particle size calculated to be 27.76nm as seen in PXRD. FTIR analysis gave characteristic peaks of functional groups. SEM-EDX confirmed successful doping and grain size of the particle. Bacteria isolated from samples showed pink rods in gram staining indicating gram-negative bacilli. Biochemical findings confirmed E. coli in samples. Characteristic zones of inhibition in range 12-18mm establish good antibacterial properties with MIC of synthesized nanoparticles <0.5mg/ml and crystal violet assay assure antibiofilm properties of Zn-Cu. The result of the study can be advantageous to develop an understanding of the development of nano-based medicine for biofilm-producing pathogens.
Keywords: Antibiofilm; Biofilm; Bimetallic Nanoparticles; Biological Synthesis; E. coli Back to TOC