Anti-Inflammatory Effect of (7R,8S)-Dehydrodiconiferyl Alcohol-9′Γ-Methyl Ether from the Rhizome of Belamcanda Chinensis: Role of Mir-146a and Mir-155
Bui Thi Binh1, Tran Thi Hien1,2, Do Thi Ha3, Pham Duc Chinh4, Le Viet Dungand Nguyen Thi Bich Thu3

1Thaibinh Medical University.

2 Departments of Experimental Medical Sciences, Faculty of medicine, Lund University, Sweden.

3National Institute of Medicinal Materials, 3B Quangtrung, Hanoi.

4Thai Nguyen University of Agriculture and Forestry, Quyet Thang, Thai Nguyen, Vietnam.

Corresponding Author E-mail: thi.hien_tran@med.lu.se

Abstract: Bioassay-guided fractionation of the EtOAc soluble fraction from the rhizomes of Belamcanda chinensis resulted in the isolation of eleven compounds (BC-1 to BC-11), those were evaluated for COX-2 expression and prostaglandin E2 (PGE2) production in Raw264.7 cells. Among them, BC-2 ((7R,8S)-dehydrodiconiferyl alcohol-9′γ-methyl ether) showed the most potent inhibitory activities by suppressing LPS-induced COX-2 expression and PGE2 production in a dose-dependent manner. Due to increasing evidence for the role of microRNAs (miRNAs) in the regulation of inflammation diseases, we examined the effects of BC-2 with or without LPS on miR-146a-5p, miR-146a-3p, miR-155, miR-25 and miR-147. As the results, they were significantly induced by LPS treatment, but only miR-146a-5p and miR-155 were reduced in the presence of BC-2. Furthermore, miR-146a-5p mimic and miR-155 mimic increased COX-2 protein and mRNA expression. However, these increases were abolished with the treatment of BC-2. These data indicate that the anti-inflammatory action of BC-2 in Raw246.7 cells involves in miR-146a and miR-155, and might enable the design of novel therapeutic agents of inflammatory diseases in the future.

Keywords: Belamcanda chinensis; (7R,8S)-dehydrodiconiferyl alcohol-9′γ-methyl ether; COX-2; PGE2; miR-146a; miR-155

[ HTML Full Text]

Back to TOC