Perception and Proprioception in Relation to Masticatory Act

C. M. BEJOYMONY¹, B. HEMASATHYA¹ and SURESH MITTHRA²

¹Department of Conservative Dentistry & Endodontics, Tagore Dental College & Hospital, Chennai – 600127, India.
²Department of Conservative Dentistry & Endodontics, Sree Balaji Dental College & Hospital, Bharath University, Chennai-600100, India.

DOI: http://dx.doi.org/10.13005/bpj/667

(Received: August 15, 2015; accepted: September 20, 2015)

ABSTRACT

Perception is the conscious mental registration of a sensory stimulus. It involves interpretation of often ambiguous, insufficient, or overwhelming information in the light of your knowledge, beliefs, goals and expectations. Proprioception means "awareness of oneself"². It keeps us aware of the position of the body, extremities, mandible etc. Proprioceptor impulses participate in reflex adjustments. They are group of enteroreceptors that provide information regarding the position of parts of body in space and the receptors of posture and movements. They are highly specialized types of mechanoreceptors (consist of the terminal dendrites of sensory neurons and are encapsulated in structures of connective tissue or free) responding to tension or movement included by associated structures.

Key word: Perception, proprioception, Stimuli.

INTRODUCTION

The senses are our window into the world, and they provide the raw material for building an understanding of the environment. It figures out what is out there and where it is.

Receptors
Receptors are transducers that convert energy present within the stimulus (for example heat, light, energy) into electrical energy by altering the electrical properties of the receptor cell membrane.

Stimulus
It is a change of environment of sufficient intensity to evolve a response in an organism.

Perception
It is the conscious mental registration of a sensory stimulus. It involves interpretation of often ambiguous, insufficient, or overwhelming information in the light of your knowledge, beliefs, goals and expectations.

Proprioception
Proprioception means "awareness of oneself"². It keeps us aware of the position of the body, extremities, mandible etc. Proprioceptor impulses participate in reflex adjustments. They are group of enteroreceptors that provide information regarding the position of parts of body in space and the receptors of posture and movements. They are highly specialized types of mechanoreceptors (consist of the terminal dendrites of sensory neurons and are encapsulated in structures of connective tissue or free) responding to tension or movement included by associated structures.

Proprioceptors in the body are Muscle spindles, Golgi tendon organs, Joint receptors and Free nerve ending.
Joint receptors: Joint receptors provide information about the position of the joint and also about how rapidly the position is changing during movement. They consist of nerve endings associated with connective tissue within the joint.

Mastication

Mastication or chewing is a harsh process to which food is subjected preparatory to swallowing. It is beneficial to the body by making digestion easier by increasing surface area and distrust the indigestible cell walls, preventing excoriation of the alimentary canal by making food safer. It also facilitates emptying of the mouth.

Mastication occurs only when food is present in a small fraction of a 24 hours period. Oral behaviour also occurs during the rest of the day i.e. when speaking, swallowing saliva, wetting the lips clenching grinding or expressing emotion.

Masticatory system includes

1. Jaws and TMJ
2. Teeth
3. Neuromuscular apparatus

The mandibular muscles constitute the active part of the system and the teeth jaws and TMJ the passive parts (also influence muscle contraction patterns)

TMJ

The TMJ is the articulation between the condyle of the mandible and the squamous portion of the temporal bone. The position or movement of a joint the slow adapting proprioception endings in the capsule and ligament provides the most important information about the accurate relationships within the joint. The muscles acting on at the TMJ are more fundamental to mandibular movement than the ligaments. Joints movement takes places by means of learned coordination of muscles groups.

In course of time pathological or adaptive changes of TMJ due to impaired dental efficiency influencing the outcome of temporomandibular disorders.

TMJ Proprioception:

The receptors in the human TMJ play an important role in identification of mandibular position when the teeth are not occluded. Storey believed that the size discrimination was entirely a function of receptors in TMJ. Wyke stated that TMJ receptors provide the greater afferent activity regarding perceptual awareness of joint position and movement.

Muscles of mastication

There are four muscles of mastication they are Masseter muscle, Temporal, lateral and medial pterygoid.

Muscle proprioception:

Muscles of mastication have muscle spindles but Matthews believed that their primary function was subconscious rather than conscious nervous control of contraction. More than twenty muscles are involved in the process of mastication. Masseter muscle is the primary bite force generator for chewing and swallowing.

The masseter muscle is, under normal conditions, a very powerful, forceful muscle for both mastication and stabilization during deglutition. The TMJ provides the fulcrum against which the masseter and other muscles of mastication can perform work.

Types: a) Based on slow or rapid changes.

<table>
<thead>
<tr>
<th>Slow adapting (i.e. tonic)</th>
<th>Rapid adapting (i.e. phase)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Receptors which provide information regarding steady states of the body, such as blood composition and body position.</td>
<td>Receptors which provide information regarding states that are continuously changing. Ex-receptors be in our joints has been flexed but also how rapidly it was flexed and even if that velocity change.</td>
</tr>
</tbody>
</table>
Teeth

Canine response

- Different authors did study on animals and concluded that canines are most sensitive of all oral structures followed by gingival tissues.
- Bonaguro study on human beings and found that patients could detect the smallest relative differences in forces applied to the teeth with their maxillary canine although the canine had a optimal functional range than maxillary incisors. Kawamura studied by applying manual stimulation to incisors and canines and molars and concluded that neurons for canines were densely distributed and the sensory information from individual teeth had its own specific receptive sites in the trigeminal nucleus.

Directional sensitivity

Jerge reported the receptors in periodontal membrane are directionally sensitive. Kawamura applied pressure to stimulus in cats teeth and found that specific sites in bulbar and spinal trigeminal nuclei responded to the pressure to the teeth from a specific direction. Wagers and smith noted that the receptors around the teeth responded more to force in one direction than another.

Directional proprioception

Kawamura found that patients with natural teeth could discriminate differences better at 2mm range than could patients with denture. Langer and Michman observed that patients with previous experience could discriminate the different grades of hardness better than new dentures.

Tactile sensitivity of teeth to load

Munch reported a load of 1.5 Gm was perceived in human dentition.

Effect of local anesthesia on teeth proprioception

Shiiala tested patients for effect of local anesthese and found slight difference. So they concluded saying that the sensory receptors were not completely desencitised.

Location of dental receptor sites

Hannam and pfaffman both felt that the majority of receptors giving rise to impulses came from periodontal membrane.

Neuromuscular apparatus

Mandibular movements are initiated in brain. To control oral motor functions like chewing, biting, speech etc. the CNS relies on information from sensory organs in the orofacial structures. The nerve endings in the oral mucosa and proprioceptors in periodontia, muscles and TMJ constitute the sources of reflex control of jaw movements.

The CNS as the originator of all active muscle movement impacts on the occlusion in three ways:
1) during growth and development
2) during normal function
3) excessive function

The control of mastication by central pattern generator has been divided into identifiable processes which occurs during chewing cycle and the activation of burst generators which are of premotor neuron cells that control the activation or inhibition of motor neurons.

b) Based on stimuli received from external and internal environment.

<table>
<thead>
<tr>
<th>They provide information about our external environment.</th>
<th>They provide information about our internal environment.</th>
</tr>
</thead>
<tbody>
<tr>
<td>They are located near the body surface.</td>
<td>They are located in blood vessels and in viscera and also referred as visceral receptors.</td>
</tr>
</tbody>
</table>
Central and Sensory Regulation of Chewing: Some peripheral sites influence motor neurons relatively directly by action on “chewing centers” itself others do it so by indirectly affecting the indirect projection to one or more of the high centers (such as sensorimotor cerebral cortex) that regulate the motor neuron via the chewing centre. Broken lines denotes less direct central pathways.

Proprioceptive responses from jaw muscles are controlled by Mesencephalic nucleus and activation of jaw muscles is mediated by trigeminal motor nucleus.

Proprioception in mastication

Perception in mastication

The sensory modalities responsible for perceiving texture and mouth feel can be divided into 3 distinct groups ie mechanoreceptors in the superficial structures of the mouth such as the hard and soft palate, tongue and gums, periodontal membrane and surrounding the roots of the teeth; muscles and tendons that are involved in mastication.

When food is introduced into the mouth, it is positioned and pressed against the palate by the tongue, from which information about the surface textural characteristics is obtained.

Oral health-related quality of life

One of the most immediate and important functional consequences of many oral disorders is a reduction in chewing ability. The ability to chew is not only an important dimension of oral health, but is increasingly recognized as being associated with general health status, because the ability to chew food may affect

Impaired chewing ability is perceived as a serious oral health impairment, and has been found to be related to many other oral health problems when assessed with broad concepts such as (OHRQoL). Oral conditions such as infected or sore gums, loose teeth, toothache pain, and fewer functional tooth units have been

Periodontal ligament

The periodontal ligament provides the means by which the forces exerted on the tooth are transmitted to the bone that supports it in case of patient who needs the complete denture is deprived of periodontal ligament and the entire mechanism of force transmission is altered.

In edentulous patient the periodontal ligament membrane have been lost but the sensory nerve endings in the mucosa are substitute for the proprioceptors of periodontium and are responsible for signals to muscles. Edentulous patients has lost the neuroperiodontal function but he retains the neuromuscular, neuroarticular functions. The area of mucosa available to receive the load from cd is limited when compared with the corresponding areas of support available for natural dentition.

Maximum forces of 13 to 16lb (6 to 8 kg) during chewing has been recorded with complete dentures wearers maximum bite forces appear to be five to six times less for complete denture wears than those with natural dentition.

Patients with prostheses frequently limit the loading of supporting tissues by selecting food that does not required masticatory effort exceeding the tissue tolerance. Tryde found that patients with complete denture experience a significant decrease in retention following application of anaesthesia to the tissues. Brill et al believed that loss any natural tooth perception can be compensated by composite results of sensory signal from joints and receptors in denture foundation. The pronounced difference between persons with natural teeth and patients with complete denture in functional context:
The mucosal mechanism of support by periodontium8
Movement's complete dentures during mastication

The progressive changes in maxillomandibular relations and the eventual migration of dentures and the different stimuli to sensory motor system.

Possible interactions among various components of masticatory system in context of a change in the mechanism of occlusal support

Advancing age may delay the central processing of the nerve impulse as well as the functional motor units and the fast muscle fibres and decreases the cross sectional area of the masseter and median pterygoid muscles. Older people tend to have poor motor coordination and weak muscles.

The presence of inanimate foreign objects in the edentulous mouth is bound to elicit in the central motor system, which intern influences the cyclic masticatory stroke pattern. Both the exteroceptors and proprioceptors are probably affected by size, shape, position, pressure, and mobility of the prosthesis. The tactile stimuli that arises from the contact of the prosthesis which with the richly innervated are probably ignored after a short time.

Edentulous patients expect and are expected to adapt to the denture more or less instantaneously. That adaptation must take place in the context of patients or else systemic emotional and psychological states. Articulation of the craniomandibular complex in vertibrates is genetically patterned, primarily for the mastication of food stuffs.

The mechanism of human's craniomandibular articulations have been extensively studied by Bakke. The occlusal stability keeps the masticatory fit, enabling the masticatory system to meet its functional demands and the best occlusal stability with the mandible in the intercuspal position.

Perception in mastication

Oral studies of perception dimensional two types: that discriminates changes in thickness and that determined minimal thickness perceived between incisor and occlusal surfaces of the teeth.

Manly et al5 compare three groups of patients regarding size judgment of plastic disks held between incisal edges of anterior teeth. The group contains patient of natural dentition and complete denture. And concluded that there is no significant difference found and size judgment was probably accomplished by proprioceptive sensation from TMJ and masticatory muscle.

Kauuamur concluded that patients with natural teeth could discriminate differences better than patients with dentures.

Langer states that patient with previous dentures experience could discriminate differences grades hardness than new denture wearer.

There was an average agreement between the preferred sides in the first and all chewing cycles of the hard food, while no such
agreement existed for the soft food. This may indicate that the laterality evoked by the hard food is more probable to be towards the same side on which the first chews occurred; the side with the higher force needed to masticate a hard food.

It is the texture perception during but not before the initiation of mastication which plays the main role in determining the preferred side for chewing. Texture perception prior to the actual chewing process is probably not strong enough to affect the start of mastication, so, in most cases the pattern of mastication might have a fixed beginning, insensitive to textural signals, possibly starting with a specialized side for sensing food texture, or probably the side which is more comfortable and more effective for chewing.

Osseoperception

Osseoperception has been defined as the conscious perception of external stimuli transmitted via a bone-anchored prosthesis by activation of neural endings and/or receptors in the periimplant environment such as the bone and more likely the periosteum. It is stated as part of an overall sensory-motor integration of the endosseous implants in the human body.

Patients with implant supported prostheses have improved tactile discriminative capabilities and report improved motor function in comparison with those wearing complete dentures, although their sensory and motor capabilities do not appear to match those of dentate individuals.

CONCLUSION

Jaw movements are initiated and control by the brain and modified by the reflexes that largely originate from the nerve ending in the oral mucosa, proprioceptors in the periodontal muscles and TMJ.

REFERENCES

1. Indu Khurana, Human Physiology, Somatosensory System, Elisevier 2007
3. RL Bijlani: Understanding medical physiology, 4th edition, Jaypee Brothers, Medical publishers LTD
5. Robert W, Jaw muscles structure and function, Science and Practice of Occlusion, Quintessence publishing co.Inc.
9. Mika Inukai et al, Association between perceived chewing ability and oral health-related quality of life in partially dentate patients.