A Probe into Prohealing Potential of Glyceryl Trinitrate

Smita A. Surale-Patil1, Tatyasaheb Patil2 and Ravindra Kulkarni3

1Department of pharmacology, Krishna Institute of Medical Sciences
Deemed To be University, Karad, Maharashtra - 415110, India.
2Pharmacologist Consultant Physician, Gurukripa, Station Road, Miraj, Maharashtra, India.
3Bharati Vidyapeeth Deemed University Medical College and Hospital, Sangli, India.
*Corresponding Author E-mail: smitaasp73@gmail.com

http://dx.doi.org/10.13005/bpj/1806

(Received: 11 June 2019; accepted: 30 October 2019)

Wound healing is a complex, delicate process which consists of series of cellular and biochemical events leading to re-establishment of anatomical continuity. Anal fissure is a painful, chronic, non-healing wound. Its chronicity is due to spasm of anal sphincter and local ischemia. It is treated surgically by sphincterotomy to eliminate sphincter spasm. Therefore, Glyceryl trinitrate (GTN) has been used as a non-surgical alternative treatment due to its spasmylytic activity. The present study was undertaken to determine wound healing potential of GTN in wistar rats. 18 male wistar rats were divided in three groups, 6 rats per group Control (Normal saline), GTN, GTN Ointment base. A 500 mm² excisional wound, circular in shape was created. The drugs were applied topically over the wound, one day after the wounding. Two parameters were studied viz; wound contraction and period of epithelization. Glyceryl trinitrate has shown statistically significant difference in wound contraction compared to control on 10th day. Period of epithelization was not reduced significantly by Glyceryl trinitrate when compared to Control. Glyceryl trinitrate has wound healing potential apart from its spasmylytic action.

Keywords: Glyceryl trinitrate; excisional wound; wound contraction; epithelization.

Wound healing is a complex, delicate process which consists of series of cellular and biochemical events leading to re-establishment of anatomical continuity. Generally wounds heals without complications. There are many factors which affect wound healing. These factors may interfere with one of the phases of wound healing. There may be impaired wound healing, which leads to chronicity of wound eg. Chronic anal fissure, diabetic foot wound, venous ulcers. Chronic wound requires several days of treatment to achieve satisfactory healing without complications. The need for improving impaired wound healing has resulted in continued research on wound healing in human as well as animals.

Anal fissure is a painful, chronic, non-healing wound. It’s chronicity is due to spasm of anal sphincter and local ischemia.1,2 Commonly, anal fissure is treated surgically by sphincterotomy to eliminate sphincter spasm. Glyceryl trinitrate (GTN) is a non-surgical alternative treatment due to its spasmylytic action.3,4 GTN is also used to promote wound healing.5,6 GTN has been used in chronic anal fissure and compared with calcium channel blockers for its therapeutic effect.7
The prohealing effect of GTN is believed to be due to smooth muscle relaxation resulting in mitigation of sphincter spasm and local ischemia.8,9 Since wound healing is a complex phenomenon, there is a possibility that wound healing potential of GTN may not be solely due to smooth muscle relaxant action. Therefore, the present study was undertaken to investigate, whether GTN hasany wound healing property apart from its spasmylytic action. We have also studied the effect of GTN ointment base, to see if wound healing is due to the drug itself or is potentiated by the base.

Aim and Objectives

To determine wound healing potential of GTN.

MATERIALS AND METHODS

Study was carried out in 3 groups of rats (6 rats per group) for wound healing potential of Glyceryl trinitrate (GTN). The animals bearing experimental wounds were treated with Normal Saline, GTN, GTN Ointment Base. The time required for epithelization was assessed in terms of days required for total fall of eschar with no trace of wound and full covering by glistening young epithelium.

Monitoring of healing

Excisional wounds

Two parameters viz; contraction of wound and epithelization period were monitored. The wound contraction was accomplished by periodical (every 4th day post wounding) recording of wound size by planimetry or by tracing the wound area on polythene paper first and subsequently on mm2 paper every 4th day. The degree of wound healing was calculated as percentage closure of the original wound area using the following formula:

\[\text{Percentage closure} = \frac{A_0 - A_d}{A_0} \times 100 \]

Where \(A_0 \) = wound area on zero day and \(A_d \) = wound area on corresponding day.

The mean percentage of wound contraction and standard error of mean were calculated in control (Normal Saline), GTN and GTN Ointment Base treated groups. The time required for epithelization was assessed in terms of days required for total fall of eschar with no trace of wound and full covering by glistening young epithelium.

Statistical Analysis

The level of significance between individual group was analysed using one way ANOVA. Data was expressed as mean ± SEM with a probability of \(p < 0.05 \) considered to be significant.

After completion of epithelization, animals were followed up by standard procedures as outlined by CPCSEA guidelines and rehabilitated.

Observations and Results

There was statistically significant difference in mean percentage of wound contraction of drug treated groups – GTN, when compared with
Table 1. Group of animals and Drug Treatment Schedule for excisional wound model

<table>
<thead>
<tr>
<th>Group No.</th>
<th>No. of Animals</th>
<th>Drugs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
<td>Control (Normal Saline)</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>0.2% Glycerl trinitrate ointment</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>GTN Ointment Base</td>
</tr>
</tbody>
</table>

Table 2. Percentage of wound contraction

<table>
<thead>
<tr>
<th>Group No.</th>
<th>No. of Animals</th>
<th>Drugs</th>
<th>Mean Percentage Wound Contraction ± S.E.M.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
<td>Control (Normal Saline)</td>
<td>55.33±6.04 74.00±1.63 90.33±1.82</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>GTN</td>
<td>70.67±2.04* 81.00±1.98* 90.33±1.50</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>Ointment Base</td>
<td>67.33±8.04 72.33±7.42 94.6±1.34</td>
</tr>
</tbody>
</table>

Data is expressed as Mean ± S.E.M. p< 0.05 is significant *= p < 0.05 When compared with Control

DISCUSSION

GTN is used to treat chronic anal fissure. It acts by release of nitric oxide (NO), which increases concentration of Guanylyl cyclase. It increases cyclic GMP and brings out vasodilatation. GTN promotes wound healing by increasing blood supply and thereby nourishment to the wound area. In addition, GTN activates cGMP, an intracellular intermediate, that inhibits the calcium activity. Calcium modulates cellular proliferation, modification, maturation of keratinocytes and fibroblasts.

GTN increases angiogenesis which is more vital. Wound contraction mediated by myofibroblasts is a secondary effect to angiogenesis. GTN application stimulates the production of organized collagen fibres and dampens inflammatory response by reducing number of polymorphonuclear cells. An NO inhibitor or NO synthase inhibitor can retard wound
Period of Epithelization in Days

<table>
<thead>
<tr>
<th>Group no.</th>
<th>No of Animals</th>
<th>Drugs</th>
<th>Mean Period Of Epithelization</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>6</td>
<td>Control</td>
<td>19.00±0.45</td>
</tr>
<tr>
<td>2.</td>
<td>6</td>
<td>GTN</td>
<td>17.83±0.31</td>
</tr>
<tr>
<td>3.</td>
<td>6</td>
<td>Ointment Base</td>
<td>19.00±0.45</td>
</tr>
</tbody>
</table>

Data is expressed as Mean ± S.E.M. *p<0.05 is significant * = p < 0.05 compared with Control

GTN acts as an NO donor. NO plays an important role in modulating cytokines that initiate the process of inflammation after formation of wound. NO modulates inflammation induced oedema formation and it inhibits inflammatory cell infiltration into granulomas. It is vital for the activity of pro-angiogenic cytokines. It also important in the Vascular Endothelial Growth Factor (VEGF) dependent and independent angiogenesis. Angiogenesis in wound bed is important to maintain newly formed granulation tissue. Keratinocyte proliferation and wound re-epithelization is NO dependent, which is mediated by VEGF. It plays important role in collagen synthesis which is important in the proliferative phase of wound healing, as collagen gives strength to wound.12-13 In a previous study it has been observed that NO has promoted re-epithelization in healing of wounds6,14. An NO inhibitors or iNOS inhibitor can retard wound healing by decreasing proliferation of keratinocytes and delays healing.15,16

The present study was undertaken to determine if GTN possesses wound healing potential. The property of GTN regarding wound healing was compared with control group. GTN has shown increase in mean percentage of wound contraction on 10th day after wounding. Percentage of wound contraction of Control group (74.00±1.63) and that of GTN group is (81.00±1.98). There was statistically significant difference in mean percentage of wound contraction and GTN was better than control group. There was no statistically significant difference in period of epithelization when compared with control.

Thus from present study it seems that apart from spasmolytic activity Glyceryl trinitrate has wound healing property as it has enhanced mean percentage of wound contraction.

CONCLUSION

Apart from the spasmolytic activity of Glyceryl trinitrate, wound healing property has been demonstrated in our study, as it has enhanced mean percentage of wound contraction.
ACKNOWLEDGEMENT

Authors acknowledge to Mrs Gore, Associate Professor, Department of Preventive and Social Medicine, Bharati Medical college and Hospital, Sangli for her valuable support in statistical analysis.

REFERENCES