Effect of Bromhexine on the Pharmacokinetic of Tilmicosin in Broiler Chickens

Nema S Shaban¹, Abeer M Radi¹, Alsadek H Bogzil², El-Banna H A³, Elham Ahmed Mobarez⁴ and El-Gendy A A M¹

¹Department of Pharmacology, Faculty of Veterinary Medicine, Beni-Suef University, 62511, Egypt.
²Department of Pharmacology, toxicology and forensic medicine, Faculty of Veterinary Medicine, Omar Al Mukhtar University, Al Bayda, Libya.
³Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University 12211, Giza, Egypt.
⁴Department of Pharmacology, Animal Health Research Institute, Dokki, Giza, Egypt.
*Corresponding author E-mail: nsh.pharma@yahoo.com

http://dx.doi.org/10.13005/bpj/1738
(Received: 11 June 2019; accepted: 16 August 2019)

Concurrent administration of drugs may alter their pharmacokinetic parameters, so; investigation to what extent bromhexine hydrochloride affects the pharmacokinetic behavior of tilmicosinwas our aim of this work. Ten broiler chickens were classified into two groups as follow, the first one (tilmicosin group) was given single oral dose of tilmicosin(20 mg/kg.b.wt.) while the 2nd(pre-treated group) was given single oral dose of bromhexinehydrochloride (1 mg/kg.b.wt.) followed by single oral dose of tilmicosin(20 mg/kg.b.wt.) one hour later. The serum concentration of tilmicosin was measured using High Pressure Liquid Chromatography (HPLC) method. The results revealed that the mean serum concentrations of tilmicosin were significantly lower in pre-treated group when compared with tilmicosin alone group at the corresponding time intervals. Pharmacokinetic parameters were significantly differed (p<0.001) between both groups. The maximum serum concentration were (Cmax0.70±0.02, 0.81±0.04µg/ml), achieved at Tmax0.89±0.16, and 2.10±0.06h), absorption half-life (t0.5ab) of 0.16±0.08, and 0.37±0.01h; area under curve (AUC) of 12.96±0.42and 16.73±0.42µg.h/ml) in tilmicosin-bromhexine and tilmicosinalone groups respectively. In conclusion, based on the obtained pharmacokinetic parameters, these findings showed that bromhexine accelerates the tilmicosin penetration into body tissues, achieving higher and faster concentrations than when given tilmicosin alone.

Keywords: Tilmicosin, Bromhexine, pharmacokinetic, HPLC, broilers.
enabling them to reach a high concentration in the target tissue even after administration of a small dose. Tilmicosin is one of the most important broad-spectrum macrolides developed for veterinary use especially for treatment of respiratory infections in cattle and poultry because of its extensive accumulation in pulmonary tissues. Tilmicosin is a semi synthetic macrolide antibiotic of tylosin derivatives commonly used by veterinaries, has been shown to reveal beneficial pharmacological activities. It suppressed bacterial protein synthesis by penetrating the cell membrane of sensitive microbes and binding to the 50s ribosomal subunit. Moreover, the translocation of immature peptide chains between the 50s and 30s ribosomal subunits is interfered leading to early detachment and synthesis of incomplete peptide chains. It inhibits Gram-positive bacteria, such as Corynebacterium and Listeria species, some Gram-negative bacteria, such as Pasteurella and Haemophilus species, as well as atypical bacteria as Mycoplasma species.

Bromhexine is a mucolytic expectorant used in the treatment of respiratory disorders alone or in combination with other antimicrobials because it has ability to disturb the muco-polysaccharide of bronchial secretion enhancing the penetration power of antimicrobials. In addition, it produces an increase in immunoglobulin levels in airway secretions. Besides, it was recently recommended as a new drug for pathological states, such as alcoholic chronic pancreatitis where there is an increased pancreatic secretion.

In veterinary medicine, co-administration of bromhexine hydrochloride and antibiotics can increase antibiotic concentrations in lung tissue, nasal mucus and sputum. It promotes intra-tracheal mucus and stimulates secretion of pulmonary surfactant particles to enhance their efficiency in the treatment of respiratory infections. Based on above data, the present study was planned to explore the effect of bromhexine hydrochloride on the disposition kinetic of tilmicosin after single oral administration in normal healthy broilers.

MATERIAL AND METHODS

Drugs

Tilmicosin phosphate was kindly provided by Pharma-sweede pharmaceutical company, Egypt as a white powder (80%) with good solubility in water. It was used at a dose level of 20 mg kg\(^{-1}\) b.wt. Bromhexine hydrochloride was kindly provided by Pharma-sweede pharmaceutical company, Egypt as a white powder (98%) with poor solubility in water but soluble in N-methyl pyridine/propylene glycol (NMP/PG) (50%; 50%) solvent.

Animals and Experimental Design

The study was carried out on broiler chickens of both sexes with an average body weight from 2.5 to 3 kg. b.wt. and 45 days old. These birds were obtained from a special poultry farm at Beni-suef Governorate. The birds were kept balanced commercial ration and water ad-libitum. They were kept under good hygienic conditions and left without treatment for two weeks before the experiment for acclimatization and ensuring complete clearance of any antibacterial agents. The experimental protocol was designed according to Ethical Committee of the Faculty of Veterinary Medicine, Beni-suef University, in accordance with the Guide for the Care and Use of Laboratory Animals. Feed was withheld 12 hours before giving drugs. They divided into two groups each of 5 chickens. The first group (tilmicosin group) was given a single oral dose of tilmicosin (20 mg/kg.b.wt.) while the second (pre-treated group) was given single oral dose of bromhexine hydrochloride (1 mg/kg.b.wt.) followed by single oral dose of tilmicosin (20 mg/kg.b.wt.) one hour later.

Blood samples (1-1.5 mL) were collected from wing vein into test tubes at 15, 30 minutes, 1, 2, 4, 8, 12, 24, 48 and 72 hours post administration. All blood samples were left to clot for 30 minutes, centrifuged at 3000 \(r.p.m\) for 15 minutes and the obtained clear sera were transferred to eppendorff’s tubes and kept in deep freeze (-20°C) till assayed by High Pressure Liquid Chromatography (HPLC).

Analytical procedure

Chemicals and Reagents

Reagent grade methanol, acetonitrile, n-hexane (Merck, Nogent–Sur–Marne, France), de-ionized water or HPLC grade water, Ammonium acetate, di-potassium hydrogen phosphate (Merck) and calcium chloride (Sigma, USA). Trifluoroacetic acid: - UV grade (Merck). The solvents used during the chromatographic analysis of the drug were HPLC grade.

Chromatographic condition

Serum tilmicosin concentrations were measured using HPLC method. The HPLC
system[2](in Animal Health Research Institute, Dokki, Giza, Egypt) which is consisted of: Agilent series 1200 quaternary gradient pump, Series 1200 auto sampler, Series 1260 UV Vis detector, HPLC 32D Chemstation software (Hewlett-Packard, Les Ulis, France). Analytical column: the chromatographic column was a reversed-phase column (Extend-C18, Zorbax (5 µm, 250mm x 4.6mm) column (Agilent Company), Acrodises (syringe filters), Millex HV13 filters (0.45 µm (tilmicosin), 13 mm id) (Millipore, Saint Quentin Yvelines, France).

Sample preparation
Plasma protein in each collected sample was precipitated by adding acetonitrile to chicken plasma or a standard sample (1:1). The mixture was mixed using the vortex for 30 seconds, and then centrifuged for 5 minutes at 1000xg. The clear supernatant was evaporated using nitrogen evaporator (0.5ml). The dried residue was dissolved in equivalent volume of dipotassium hydrogen phosphate buffer (0.5ml). The sample was injected directly into HPLC system after filtration with a fit acrodisc 0.45 um.

Liquid chromatography operating conditions
Injection volume, 50µl; flow rate, 0.7 ml/min; wave length, 287 nm; column temperature, ambient; stop time, 20 min; post time, 5min; mobile phase A, 0.05% trifluoroacetic; mobile phase B, acetonitrile.

Liquid chromatography gradient conditions
The gradient mobile phase consisted of (A): 0 min, acetonitrile –0.05% trifluoroacetic acid (22:78 v/v). (B): 6 min, acetonitrile –0.05% trifluoroacetic acid (45:55 v/v). (C): 10 min, acetonitrile –0.05% trifluoroacetic acid (22:78 v/v). The mobile phase was filtered using 0.45 µm membrane filter and degassed. The mobilephase was eluted at a flow rate of 0.7 ml/min with UV detection wave length of 287 nm.

Pharmacokinetic analysis of data obtained
Serum concentration (log 10) versus time curve were generated and best fitted by the aid of computer poly-exponential curve stripping program (R-strip, Micromath, Scientific software, USA). Data from each chicken were fitted individually and the pharmacokinetic variables were computed by the aid of the software program. The hybrid rate constants of the first order absorption and elimination rate constants(Kab and Kel), absorption and elimination half-lives t0.5(ab), t0.5 (el), area under the curve from zero to infinite time (AUC 0–∞), mean residence time (MRT), maximum serum concentration (Cmax) and time to be achieved (tmax) were calculated. The results were expressed as Mean±SE and the obtained data statistically analyzed using student T-test".

Statistical Analysis
The results were expressed as mean ± standard error of mean (S.E). Statistical significance was determined by student (T-test) using SPSS (version 20.0) software (IBM SPSS Statistic 20.0, Armonk, NY, USA). The P values less than 0.05 were considered statistically significant[3].

Table 1. The concentrations of tilmicosin standard (ug/ml) and their corresponding peak response

<table>
<thead>
<tr>
<th>Retention time</th>
<th>Level</th>
<th>Concentration (ug/ml)</th>
<th>Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.88</td>
<td>1</td>
<td>0.03</td>
<td>46.344</td>
</tr>
<tr>
<td>2</td>
<td>0.06</td>
<td>97</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.15</td>
<td>240.33</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.3</td>
<td>476.91</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0.6</td>
<td>964.33</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1.5</td>
<td>2409.3</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>4595.4</td>
<td></td>
</tr>
</tbody>
</table>

Table 2. Mean Serum concentrations of tilmicosin and tilmicosin-bromhexine hydrochloride in healthy broiler chickens after single oral administration of 20 and 1 mg/kg, b.wt. respectively (n = 5)

<table>
<thead>
<tr>
<th>Time</th>
<th>Tilmicosin group</th>
<th>Tilmicosin+ bromhexine group</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 min</td>
<td>0.19±0.01</td>
<td>0.28±0.01***</td>
</tr>
<tr>
<td>30 min</td>
<td>0.34±0.01</td>
<td>0.60±0.05***</td>
</tr>
<tr>
<td>1h</td>
<td>0.75±0.02</td>
<td>0.75±0.04</td>
</tr>
<tr>
<td>2 h</td>
<td>0.85±0.02</td>
<td>0.60±0.02***</td>
</tr>
<tr>
<td>4 h</td>
<td>0.73±0.02</td>
<td>0.54±0.02***</td>
</tr>
<tr>
<td>8 h</td>
<td>0.55±0.01</td>
<td>0.44±0.003***</td>
</tr>
<tr>
<td>12 h</td>
<td>0.45±0.01</td>
<td>0.35±0.002**</td>
</tr>
<tr>
<td>24 h</td>
<td>0.30±0.004</td>
<td>0.20±0.004***</td>
</tr>
<tr>
<td>48 h</td>
<td>0.11±0.01</td>
<td>0.07±0.002**</td>
</tr>
<tr>
<td>72 h</td>
<td>0.03±0.002</td>
<td>0.01±0.003**</td>
</tr>
</tbody>
</table>

** Significant at p ≤ 0.01, *** Significant at p ≤ 0.001
RESULTS

Standard curve of tilmicosin

Tilmicosin standard concentrations of 0.03, 0.06, 0.15, 0.3, 0.6, 1.5 and 3 µg/ml and their corresponding peak responses are illustrated in Table (1) and Fig. (1), and Typical Chromatogram of tilmicosin are illustrated in Fig. (2). The calibration curve was calculated by linear regression equation method as $y = 1538.5x + 21.755$ where ‘y’ indicates the area under peak and ‘x’ indicates tilmicosin concentrations. Linearity existed within the range of 0.03 and 3 µg/ml with a correlation coefficient $r^2 = 0.9994$. The LOD for tilmicosin was 0.001 µg/ml, while, LOQ was 0.003 µg/ml.

Single oral administration of tilmicosin in healthy broiler chickens

The mean serum concentrations of tilmicosin at different time intervals following single oral dose (20 mg/kg body weights) in broiler chickens are tabulated in Table (2). The drug was firstly detected (0.19±0.01 µg/ml) after 15 minutes and the peak serum concentration (0.85±0.02 µg/ml) was reached at 2 hours post drug administration and the lowest drug concentration (0.03±0.002 µg/ml) was reached at 72 hours post drug administration.

The pharmacokinetic parameters of tilmicosin following its oral administration are tabulated in Table (3). The calculated value of maximum concentration (C_{max}) was 0.81±0.02 µg/ml and the time (t_{max}) taken to reach the peak was 2.10±0.06 hours. The drug was rapidly absorbed from broilers gut with absorption half-life ($t_{0.5ab}$) of 0.37±0.01 hour but slowly eliminated with elimination half-life ($t_{0.5el}$) of 13.49±0.54 hours, the area under curve (AUC) was 16.73±0.42 µg.h/ml and mean residence time (MRT) was 19.4±0.74 hours.

Single oral administration of tilmicosin pre-treated with bromhexine hydrochloride in control healthy broiler chickens

The mean serum concentrations of tilmicosin (20 mg/kg b.wt.) pre-treated with bromhexine hydrochloride (1 mg/kg b.wt.) at single oral administration of 20 and 1 mg/kg b.wt. respectively (n = 5)

<table>
<thead>
<tr>
<th>kinetic parameters</th>
<th>Unit</th>
<th>Tilmicosin</th>
<th>Tilmicosin+ bromhexine</th>
</tr>
</thead>
<tbody>
<tr>
<td>K_{ab}</td>
<td>h$^{-1}$</td>
<td>1.89±0.05</td>
<td>8.13±2.94</td>
</tr>
<tr>
<td>$t_{0.5ab}$</td>
<td>h</td>
<td>0.37±0.01</td>
<td>0.16±0.08***</td>
</tr>
<tr>
<td>K_{el}</td>
<td>h$^{-1}$</td>
<td>0.05±0.002</td>
<td>0.05±0.002</td>
</tr>
<tr>
<td>$t_{0.5el}$</td>
<td>h</td>
<td>13.49±0.54</td>
<td>13.78±0.65</td>
</tr>
<tr>
<td>C_{max}</td>
<td>µg/ml</td>
<td>0.81±0.02</td>
<td>0.70±0.01***</td>
</tr>
<tr>
<td>t_{max}</td>
<td>h</td>
<td>2.10±0.06</td>
<td>0.89±0.16***</td>
</tr>
<tr>
<td>AUC</td>
<td>µg.h$^{-1}$.ml$^{-1}$</td>
<td>16.73±0.42</td>
<td>21.92±2.46***</td>
</tr>
<tr>
<td>AUMC</td>
<td>µg.h2.ml$^{-1}$</td>
<td>18.80±0.25</td>
<td>23.8±0.13***</td>
</tr>
<tr>
<td>MRT</td>
<td>h</td>
<td>19.4±0.74</td>
<td>19.57±1.05</td>
</tr>
</tbody>
</table>

** Significant at $p \leq 0.01$, *** Significant at $p \leq 0.001$.
different time intervals post single oral dose in five broiler chickens are tabulated in Table (2). The drug was firstly detected (0.28±0.01 µg/ml) after 15 minutes and the maximum serum concentration (0.75±0.04 µg/ml) was reached at 1 hour post drug administration and the lowest serum concentration (0.015±0.0003 µg/ml) was reached at 72 hours post drug administration.

The pharmacokinetic parameters of pre-treated group are tabulated in Table (3). The calculated value of maximum concentration (C_{max}) was (0.70±0.01µg/ml) and the calculated value of (t_{max}) was 0.89 ± 0.16 hour. The drug was rapidly absorbed from healthy broilers gut with absorption half-life (t_{0.5ab}) of 0.16±0.08 hour but slowly eliminated with elimination half-life (t_{0.5el}) of 13.77±0.66 hours, the area under curve (AUC) was 12.96±0.42 µg.h/ml and mean residence time and (MRT) was (19.57±1.05 hours).

Comparison pharmacokinetic between tilmicosin and tilmicosin pre-treated group after single oral administration in healthy broiler chickens

The mean serum concentrations of tilmicosin in control and pre-treated groups after single oral administration in healthy broiler chickens at different time intervals are shown in Table (2) and depicted in Fig.(3). The drug was firstly detected (0.28±0.01, 0.19±0.01µg/ml) at 15 minutes post single administration of tilmicosin pre-treated
and tilmicosin alone respectively. The peak serum level (0.75±0.04 µg/ml) was higher in the first one hour then become lower in pre-treated group while the peak serum level of tilmicosin (0.85±0.02 µg/ml) was reached at 2 hours post drug administration and the lowest concentration (0.015±0.0003, 0.03±0.02 µg/ml) were determined at 72 hours post single oral administration of tilmicosin in pre-treated and control groups respectively.

Pharmacokinetic parameters were significantly different (p<0.01) in both groups and recorded in Table (3). The maximum serum level (C_{max}) was lower in pre-treated group (0.70±0.02, 0.81±0.04 µg/ml), while calculated (T_{max}) was shorter than control group (0.89±0.16, 2.10±0.06 hours) respectively. The drug was rapidly absorbed in pre-treated group with absorption half-life (t_{ab}) (0.16±0.08, 0.37±0.01 hour), Area under the curve (AUC) (12.96±0.42, 16.73±0.42 µg.h/ml) and Area under the maximum concentration curve (AUMC) (13.8±0.13, 18.80±0.25 µg.h/ml²) in pre-treated and non-treated groups respectively.

Discussion

Tilmicosin is commonly used in veterinary field for treatment of respiratory diseases, so evaluation of the effect of bromhexine hydrochloride on the disposition kinetics of tilmicosin is our aim in this research. The adverse effects of tilmicosin including cardiovascular toxicity as well as deaths after intravenous administration in broiler chickens had been previously mentioned. The pharmacokinetics of tilmicosin (20 mg/kg body weight) alone or pre-treated with bromhexine hydrochloride (1 mg/kg body weight) following a single oral administration were detected in this study. Tilmicosin was detected in serum 15 minutes post administration (0.19 µg/ml) and increased gradually thereafter to reach its peak (0.81 µg/ml) at 2.10 hours post administration then decreased gradually till reach its lower level (0.03 µg/ml) at 72 hours in tilmicosin only group. Concerning of pharmacokinetic parameters, the result of C_{max} 0.81 µg/ml is inconsistent with that reported for azithromycin in broilers (0.95 µg/ml)³, in calves (0.97 µg/ml)⁶, and in cows (0.86 µg/ml)⁷, but lower than that reported in sheep (1.29±1.19 µg/ml)⁸, in goat (1.56 µg/ml)⁹, in swine (2.03 µg/ml)¹⁰, in broilers for Pulmotil AC® at a single dose of 30 mg/kg (2.12 µg/ml)¹¹, and that reported in rabbits for Pulmotil® at a single dose of 12.5 mg/kg (1.31 µg/ml)²¹. These differences might be attributed to dose, species and age variations, difference in formulations and/or the method used for assaying of the drug. On the other hand, time to peak serum level (t_{max}) 2.10 hours is similar to that reported in broiler chickens for azithromycin (1.9 hours)³, also that reported for tylosin in chicken (2.36 h)²² but lower than that recorded in broilers (5.82 hours)²⁴ for (Pulmotil AC®) at a single dose of 30 mg/kg, which might be the cause of variation while it was longer than that detected in rabbits (0.66 h)²¹, in calves and cows (1 h)²⁴ which might be credit to species and dose variation, routes of drug administration and presence of food in the crop of chicken, that would affect the crop movements as well as the consistency of the feed might be affecting on the emptying of the crop. In addition; the presence of Lactobacillus ùora in the crop which lead to inactivation of the macrolides may be attributed²³.

Tilmicosin was rapidly absorbed with an absorption half-life (t_{0.5ab}) 0.37 h. Our findingis nearly similar to that reported for azithromycin in broiler chickens (t_{0.5ab} 0.57 h)¹⁵. Tilmicosin has been slowly eliminated with elimination half-life (t_{0.5el}) of 13.49 h. This outcome is higher than that reported for erythromycin (1.9 h)²⁴ which may be attributed to that tilmicosin was detected in the serum till 72 h, but lower than that reported in sheep, swine and goat (29.3, 25.26 and 29.4 h)²⁹,³⁰,³¹. In this study, the calculated area under serum concentration-time curve (AUC) was 16.73 µg.h/ml which come in agree with that stated for tylosin in broilers (18.60 µg.h.ml⁻¹)²⁶ while it is lower than that detected in chicken (21.82 µg.h.ml⁻¹)²³ for tilmicosin but higher than that recorded in pigs (9.68 µg.h.ml⁻¹)²⁷. These varieties might be credit to the species and dose variation.

This study was planned to evaluate whether there is a pharmacokinetic connection amongst tilmicosin and bromhexine hydrochloride in broiler chickens after single oral administration, the mean serum concentrations of tilmicosin (C_{max}) were significantly lower in bromhexine pre-treated (0.70±0.02 µg/ml) broilers contrasted with tilmicosin alone (0.81±0.04 µg/ml). Similar finding indicated higher concentration of oxytetracycline within the secreted mucus when used in
combination with bromhexine hydrochloride. Also, patients given amoxicillin-bromhexine combination showed significant reductions in symptoms such as cough frequency, cough discomfort, sputum volume, and had favorable clinical responses at the end of the course of treatment. Similar results revealed that the bioavailability of erythromycin and its concentration in bronchial fluid were increased after its administration as combined with bromhexine. Furthermore, injection of bromhexine with spiramycin resulted in an increase in concentration of spiramycin in bovine nasal secretions. The value of C_{max} in both groups is higher than the minimum inhibitory concentrations (MICs) for Mycoplasma gallisepticum and Mycoplasma synoviae (0.0125-0.1 μg/ml), Corynebacterium pyogenes in cattle (0.04 μg/ml) and Ornithobacterium rhinotracheale (0.06–1 μg/ml) but lower than the MICs for Clostridium perfringens strains isolated from commercial broiler farms as well as Pasteurella multocida and Mannheimia haemolytica (3.125 and 6.25 μg/ml) respectively. The National conference of constituency leaders (NCCLS) guidelines for tilimicosin susceptibility list a breakpoint of (d•8 μg/ml). This revealed that the serum concentrations of tilimicosin are lower than the MICs for some susceptible bacteria. Nevertheless, previous studies have reported that administration of tilimicosin at the recommended dose is effective for control of respiratory diseases. Tilmicosin is rapidly absorbed when given in birds pre-treated with bromhexine as appeared shorter $t_{0.5ab}$ (0.16±0.08 hour) compared to (0.37±0.01 hour). Tilmicosin concentration is rapidly reached to the peak in pre-treated group than control group as appeared shorter t_{max} (0.89±0.16) compared to 2.10±0.06 hours respectively. Simlar finding was previously reported for enrofloxacin in sheep. They reported that, $t_{0.5ab}$ was found to be 0.53 ± 0.11h for enrofloxacin alone in sheep compared to 0.33 ± 0.09h, when enrofloxacin given in combination with bromhexine.

The data of our experiment reported that C_{max} and AUC in pre-treated group are significantly lower than that for control group as reported that excipients are considered inert components of a drug formulation affecting only the physicochemical characters of the product (e.g. dissolution and drug stability). However, there were previous studies revealed that some excipients are able to produce its own direct action for example mannitol which decreases gastrointestinal transit time via its osmotic activity, surfactants, which can change membrane characteristics and vitamin E which can change the activity of multi-drug resistance proteins thereby affecting drug bioavailability. Moreover, the changes in the serum concentration and pharmacokinetic parameters induced by pretreatment with bromhexine may be attributed to enhancing the absorption of tilimicosin and the distribution of tilimicosin to different tissues and body secretions by bromhexine. Similar results were reported previously for furaltadone into tracheobronchial secretions in broilers.

CONCLUSION

The obtained results explain that concurrent administration of tilimicosin and bromhexine altered serum concentration but improve pharmacokinetic parameters. Pre-treatment with bromhexine enhanced the absorption of tilimicosin and the distribution of tilimicosin to different tissues and body secretions by bromhexine, which reflects enhanced efficacy the combination of bromhexine as compared with tilimicosin alone.

REFERENCES

5. Tscimoto T, Takano M, Tsurano T, Hoppo K, Matsumura Y, Kuriyama S. and Fukui H. Mediastinal pancreatic pseudocyst caused by obstruction of the pancreatic duct was eliminated by bromhexine hydrochloride. Intern. Med.,
17. Avci T. and Elmas M. Milk and blood:
16. Dimitrova D, Petkov P. and Tsoneva D.
15. Abo-El-Sooud K, Fahmy E, Afifi N. A. and El-Aty
14. Abu-basha E. A,Idkaidek N. M. and Al-
9. Ecker H, Lux M. and Lachmann B. The role:
8. Bach P. H. and Leary W. P. P. The effects of
7. Offermeier J, Miller R. and Brandt H. D. The:
6. Spatola J, Poderoso J. J, Wiemeyer J. C. M,
1092
13. Snedecor G. W. and Cochran W. G. Statistical:
12. Juhel-Gaugain M, Anger B. and Laurentie M.
ewes.
M. Elimination of tilmicosin in lactating:
following parenteral administrations to cows. J.
Agricultural science and technology, 3(4):
7, 36-
15. Abo-El-Sooud K, Fahmy E, Afifi N. A and El-Aty
A. M. A. Pharmacokinetics and bioavailability of:
azithromycin following intramuscular and oral:
administrations in broiler chickens. Res. Rev:
14. Dimitrova D, Petkov P. and Tsoneva D.:
Pharmacokinetics of tilmicosin in calves after:
single subcutaneous application. Agricultural:
17. Avci T. and Elmas M. Milk and blood:
pharmacokinetics of tylosin and tilmicosin:
following parenteral administrations to cows. Sci:
18. Atef M, Abo El-Sooud K, Nahed E. and Tawfik
M. Elimination of tilmicosin in lactating:
evess. DirschTierarzt/Wochenschr, 106(7): 291-
19. Ramadan A. Pharmacokinetics of tilmicosin in:
45-50(1997).
and Li X. Pharmacokinetics of tilmicosin after:
21. Gallina G, Lucatello L, Drigo I, Cocchi M.
Scandurra S, Agnoletti F. and Montesissa:
C. Kinetics and intrapulmonary disposition of:
tilmicosin after single and repeated oral:
bolus administrations to rabbits. Vet. Res.
22. Abu-Basha E. A, Al-Shunnaq, A.F. and
Gehringer. Comparative pharmacokinetics and:
bioavailability of two tylosin formulations in:
chickens after oral administration. J. Vet.
and Landoni M. Impact of the type of catheter on:
the absorption of tylvalosin (acetylvaleryltylosin) administered orally to broiler chickens. J. Vet.
24. Kowalski C. J. and Pomorskamol M. Evaluation of:
the bioequivalence of two erythromycin:
thiocyanate formulations after oral administration to:
25. Modrie S, Webb A. I. andDerendorf H.
Pharmacokinetics and pharmacodynamics of:
26. Soliman A. M. and Sedek M. Pharmacokinetics:
and Tissue Residues of Tylosin in Broiler:
Chickens. Pharmacology & Pharmacy, 7, 36-
42(2016).
27. Dimitrova D, Ëtsarov V, Dimitrov D. and
Tsoneva D. Pharmacokinetics of tilmicosin after:
oral application of Pulmotil G 200–premix in:
pigs. Agricultural science and technology, 3(4):
28. Martin G. P, Loveday B. E. and Mariot C.
Bromhexine plus oxytetracycline: the effect of:
combined administration upon the rheological:
properties of mucus from the mini-pig. J Pharm.
29. Roa C. C. Jr, and Dantes R. B. Clinical effectivness:
of combination of bromhexine and amoxicillin in:
lower respiratory tract infection. A randomized:
controlled trial. Arzneimittelforschung, 45(3):
30. Bergone-Berzin E, Pierre J. and Dournovo P.
Effect of a secretolytic (bromhexine) on the:
penetration of erythromycin into bronchial:
secretions. Fortschr Med., 100(24): 1169-

