
Biomedical & Pharmacology Journal Vol. 10(4), 2035-2043 (2017)

Segmentation of Airways in Lung Region Using Novel 
Statistical Thresholding and Morphology Methods

AMMI REDDY PULAGAM1*, VENKATA KRISHNA RAO EDE2 
and RAMESH BABU INAMPUDI3

1Vasireddy Venkatadri Institute of Technology, Nambur, Guntur, AP, India.
2Lakireddy Bali Reddy College of Engineering, Mylavaram, Vijayawada, AP, India.

3Acharya Nagrjuna University, Nagarjuna Nagar Guntur, AP, India.
*Corresponding author E-mail: pulagamammireddy@gmail.com

http://dx.doi.org/10.13005/bpj/1325

(Received: September 02, 2017; accepted: November 20, 2017)

ABSTRACT
 

 Traditional statistical thresholding algorithms use only class variance sum as a standard for 
threshold selection. These algorithms overlook characteristics of surrounding thin airways and fail to 
obtain without leakage. The airways are the leakage of fluid into the surrounding lung parenchyma 
which would result in low contrast between the airways and the lung parenchyma due to noise or 
pathologies.  We propose, a novel criterion combining the class variance sum and discrepancy of 
variances in between thin airways and lung parenchyma to eliminate the described drawback for 
traditional statistical process.  After that, we use morphological methods to identify candidate airways 
on CT slices and then reconstruct a connected three dimensional airway tree.  Extensive validation 
work was done using Lung TIME database. The experimental airway test results substantial increase 
number of branches and total tree length. From inspiration scans on the mean number of branches 
detected is 46.5%, the tree length detected is 42.33% and the number of false positives is 0.28%. 
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INTRODUCTION

 Lung airways are the breathing structures 
for inhalation and exhalation of the air process into 
and out of the lungs. These airways split into smaller 
and smaller branches from trachea to alveoli. The 
airways structure is depicted as a binary tree. The 
trachea splits into two primary branches (bronchus), 
which progress into the right and left. The primary 
bronchus splits further into two left, three right lobar 
bronchi that enter each lung lobe, respectively. The 
lobar bronchus repetitively splits until 8-10 bronchi 
trees in every lung region. The airways end in air 

sacs (alveoli) in which carbon dioxide and oxygen 
is swapped through air-blood barrier. These airways 
incorporate a composite and highly variable set of 
structures. Airways are pathologically concerned in 
various lung diseases resulting in direct exposure 
to airborne pathogens. This exposure results in 
diseases such as bronchiectasis with chronic 
infection, inflammation, and obstruction1. Airway 
wall thickening is associated with airway narrowing 
resulting in bronchitis and asthma. Tumors on airway 
wall may create obstructions. These diseases are 
connected with high morbidity, and mortality2. Hence, 
precise extraction and quantitative evaluation of 
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airway morphology related features is needed 
in clinical perform for evaluating the existence 
or severity of specific diseases for treatment. 
Due to inherent complexity of the airways and 
surrounding lung parenchyma resolution limitations 
of computed tomography (CT), manual observing 
and analysing airways is an enormously challenging 
task. Even though advanced CT techniques enabled 
visualization of 3D lung structures, it is very time 
consuming for segmenting airways manually. It is 
due to the complexity of bronchial structure and 
the involvement of a large quantity of CT slices in a 
single examination process more than seven hours 
of intensive work per case3. There are typically large 
errors associated with subjective assessments 
in terms of inter and intra observer variability4,5. 
Consequently, the availability of automated, reliable 
and accurate computerized segmentation for this 
purpose could be of great value.

 Chest CT slices exemplify the airway 
lumen as a dark surrounded by a bright airway wall. 
Many airway segmentation approaches have been 
proposed and subsequently investigated in the 
literature, a common approach to segment the airway 
is to use variants of gray value. A wide diversity 
of algorithms has been developed to segment 
the airways7- 20. Among these algorithms, region 
growing procedure is a commonly used technique 
for segmentation of the airways. All methods are 
rule-based mostly relying on region growing, 
morphology, or a combination of the two. The main 
problem of region growing approach to find the 
airways is the leakage of fluid into the surrounding 
lung parenchyma which would result in low contrast 
between the airways and the lung parenchyma 
due to noise or pathologies such as emphysema20. 
These problems occur normally in the extraction of 
thin airways where image artifacts or noise have 
a relatively high impact on the detectability of thin 
airways. These problems are exaggerated in the 
presence of lung diseases such as interstitial lung 
disease (ILD) or chronic obstructive pulmonary 
disease (COPD). 

 Therefore, region growing often results 
in leakage into the lung parenchyma. To resolve 
these issues, rules that limit the region growing, 
so as to grow only in tubular shapes or local image 
descriptors. Most of the algorithms have been 

evaluated on a small number of scans. A common 
feature in all these algorithms was how to fetch a 
good tradeoff between increasing the tree length 
and reducing the leaks.  Segmenting small bronchi 
without leakage was the conclusion drawn to 
circumvent this problem 

 In this paper, we propose a new method 
to development of an advanced thresholding for 
the automated detection of complete airway tree 
and reduce leaks. The method uses a four-stage 
approach. The first step is to segment the lung field 
from chest CT slices using the density histogram, 
thresholding the original slices, and subsequently 
applying a morphological operation to the resultant 
slices. The second stage extracts the trachea and 
main branches by using label filtering following fist 
stage results. The third stage is to demarcate lower 
density structures (e.g., airways, air region) spread 
during the extracted lung region using a minimum 
variance thresholding algorithm. The last stage is to 
extract airways from the detected air regions using a 
morphological filtering and forward pass progression 
to all filtering slices in the axial, coronal, and sagittal 
planes are extract the complete airways.

The proposed method
 The proposed method consists of four major 
stages and the whole process can be examined in 
the Fig. 1, the input is a chest CT slices that displays 
all the structures in the chest. The method starts by 
segmenting lung regions, and subsequently process 
trachea and main bronchi are extracted. Finally, 
binary airways are extracted from lung region. 

Extraction of the Lung Region 
 A lung region is extraction based on 
thresholding, smoothing, and repairing is as follows21 
is first step to segment the lung region in the chest 
CT slices. This lung region extraction is predestined 
for defining the area of interest of airway regions in 
the process. The extracted lung region is shown in 
fig 2.

Trachea and Main Bronchi Segmentation
 It is easy to segment the trachea and 
main bronchus, because of a well defined intensity 
and structures. So, simple thresholding and label 
filtering methods are often used to extract the larger 
airways and saves processing time. By using the 



2037PULAGAM et al., Biomed. & Pharmacol. J.,  Vol. 10(4), 2035-2043 (2017)

output of the binary lung segmentation the trachea 
is localized. The trachea and the main parts of the 
bronchial tree are extracted using 3D connected 
component labeling and mathematical morphology 

operations.  The area of trachea and main bronchi 
has a minimum size of 50 mm2 and maximum 
size of 1225 mm2 [18]. We need to extract only the 
specified area objects which are within a region 

Fig. 2: The flow of lung region extraction. (a) original CT image, (b) histogram of CT image, (c) 
by segmentation of the original image using Otsu’s thresholding method, (d) by mask after 

application of morphological operations, (e) by final intact lung parenchyma extraction

Fig. 1: Overview of the proposed method



2038 PULAGAM et al., Biomed. & Pharmacol. J.,  Vol. 10(4), 2035-2043 (2017)

Fig. 3: The segmentation of airways in upper, middle, and lower slices in a CT scan respectively.

and remove rest of the objects. The segmented 
Trachea and Bronchi from the CT images are shown 
as white curves in Fig.3. 

Minimum Variance Threshold Selection
 The proposed new thresholding algorithm 
considers sum of class variance sum and variance 
discrepancy into account. Traditional statistical 
thresholding algorithms [22, 23] consider only 
the sum of class variance, but neglect variance 
discrepancy for similar statistical distributions in 
between the airway lumen and wall.  As   only the 
sum of variance of threshold classes are taken as 
criterion for optimal statistical threshold search, 
sufficient attention on specific characteristic of 
lung region images is now drawn upon. In order 
to eliminate this limitation, a minimum variance 
discrepancy threshold is used, that defines a new 
statistical threshold criterion is combining two ways 
and determines the optimal threshold by optimizing 
the proposed criterion. 

 By sustaining novelty, let the segmented 
lung field having L gray values (0 to L-1) and then 
the probability of

thi gray value is defined as
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 where N  is the total number of pixels in 
the lung field,  in  having grey scale intensity ' 'i  as 
a fraction of the total number of pixels N . 

 The lung field is segregated into two 
classes CB  and CO  by using a gray value ' 't . Here,  is 

the background with values  to , and all the remaining 
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 where µB is the average of the all border 
pixels (background) of lung field and is the average 
of everything else. 

The variance of the classes is defined by
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 Computing the between class variance, 
within class variance, and the total variance of the 
distribution is defined as Otsu22 

 ...(8)

 ...(9)

 ...(10)

 
 where  ,  from the equations 8 
and 9, the following relation always holds: 

2 2 2
BetweenTotal Withinσ σ σ+=

  ...(11)

 Thus, the optimal threshold value 
* ''t  can 

be defined by Otsu22,

{ }* min 2
0 1t L Withint Arg σ≤ ≤ −=

 ...(12)

 The optimal threshold maximises the class 
between variance of airways and lung parenchyma, 
but exhibits a constraint while classifying a lung 
field into two parts of similar sizes regardless of 
the practical size of the airways. After exploring 
the potential reason for the fault, Hou23 proposed 
a comprehensive new threshold criterion, i.e., total 

class variance, and establish the optimal threshold 
by minimizing it. The optimal threshold 

*' 't  can be 
defined as 

{ }* min 2
0 1t L Totalt Arg σ≤ ≤ −=

 ...(13)

 Otsu and Hou select class variance sum 
as standards for threshold, while change in their 
coefficients for two class variances.

 The traditional methods consider only 
the sum of class variance, but neglect variance 
discrepancy between the airway wall and lung 
parenchyma of lung region. The typical example 
is in Fig. 4(a) where the airway wall has slight gray 
level changes and small class variance, whereas 
the background has large gray level changes and 
large class variance. In this case those statistical 
methods find incorrect thresholds and fail to extract 
the airways from background of lung field as exposed 
in Fig. 4(b & c). The reason for traditional methods 
considers only the sum of class variance, but ignores 
discrepancy of class variances. The proposed 
statistical thresholding method is an attempt to 
eliminate the limitations of Otsu and Hou methods. 
The new method takes the sum of class variance 
and variance discrepancy into account at the same 
time and constructs a minimum variance criterion 

Fig. 4:  (a) original segmented lung field,
(b) Otsu  method, (c) Hou  method,

(d) the proposed method

Fig. 5: (Color online) 3D reconstruction results 
of the airway trees and superimposed on the 
lungs parenchyma. The volume shown on the 

images represents only the volume for the 
segmented area (green)
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for threshold selection, which can be formulated as:

2 2 ))( ) (1 ( ( )B DiscrOS t tα ασ σ σ= − + +
 

...(14)

where B On nα = −
,

( ) ( ) ( )Discr B Ot t tσ σ σ=
 and 

2 2( ) ( ) ( )  B Discr Ot t tσ σ σ≤ ≤  or   
2 2( ) ( ) ( )Discr BO t t tσ σ σ≤ ≤  

is used to measure variance discrepancy of two 
threshold classes. Here ( )O tσ  and ( )B tσ  are their 
respective standard deviations. The parameter α  
is a weight that balances the contributions of the 
sum of variance and variance discrepancy. When

0 i.e BOn nα = = , the proposed method degenerates 
as a generalized version of Otsu method. A minimum 
variance threshold *t can be establish by minimizing 
the discrepancy in the proposed criterion

* min
0 1( ) ( )t LS t Arg S t≤ ≤ −=

 ...(15)

 Actually, equation (15) attempts to decrease 
the effect of sum of class variance and emphasizes 
the influence of variance discrepancy simultaneously. 
In this manner, the variance discrepancy becomes 
an explicit factor for determining the minimum 
variance threshold as shown in Fig. 5(d). 

Morphological Filtering
 After minimum variance threshold based 
segmentation 2D airway candidates are detected. 

As we are very much interested in a wide range 
of airway sizes (airway cross-sectional diameters 
range from a few centimeters in the trachea to well 
below the resolution of the CT scanner) a range of 
morphological structuring element (SE) sizes are 
used during the airway extraction. Topographically, 
the lung parenchyma and airways can be seen in 
black in the segmented region. We use reconstruction 
through binary SEs to identify airways in the lung 
region, corresponding to candidate airway locations. 

 The thresholding procedure explained 
above yields a set of airway candidate regions for an 
image slice I . Let ( )iC I  be the set of airway candidate 
regions obtained for slice with SE. The final set of 
airway candidate regions for image slice is the union 
of all airway regions found during this processing 

 ...(16)
 where N is the total number of SEs applied, 
we use N = 15 and
     
 

 ...(17)
 where is a 4-connected SE, and is the order 
homothetic of computed as ,(dilations). The largest 
airway will be extracted by N and the form of the. 
The smallest detectable airway will be determined 
by the choice of the SE used to compute C1 (I).  

Table 1: Evaluation measures for the ten cases in the selected set

Case  Branch  Branch   Tree    Tree   Leakage   Leakage   False 
No. count  count  length  length  count volume  positive 
  detected (cm) detected   mm3 rate (%)
    (cm)

1 165 82.2 128.4 68.7 0 0 0
2 86 46.2 65.5 39 0 0 0
3 119 29.8 74.8 20.9 3 31.3 0.35
4 43 19.3 30.2 16.5 0 0 0
5 89 50.6 74.2 57.5 4 64.8 0.93
6 189 30.6 173.8 35.7 0 0 0
7 56 68.8 54.1 62.6 2 39.8 0.18
8 81 50.6 54.6 68.7 3 31.4 0.36
9 125 52.6 82.7 36.3 0 0 0
10 77 29.8 53.7 17.4 4 63.3 0.97
Mean 103 46.05 79.2 42.33 1.6 23.06 0.279
Std. dev. 46.47 19.41 42.03 20.74 1.78 26.75 0.38
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 Airway candidate regions are calculated 
on each slice. A 3D binary image  is assembled 
by stacking these cross-sectional slices. Later on, 
is processed using a closed space dilation with a 
unit kernel radius to reconstruct the tree. During the 
reconstruction process, is used to extract only the 
3D connected region of the airway tree, removing 
disconnected airways and other false identifies. The 
tree renovation consists of forward passes to pick 
up the connected 3D airway tree branches. These 
forward passes are functional sequentially until no 
new branches can be getting to the reconstructed 
tree.

 The forward pass processes the segmented 
airways slices from apex to base. Starting with the 
airway cross section corresponding to the first slice 
of trachea, 3D region growing with six-connectivity is 
considered to identify connected airway regions on 
adjacent slices. This process iteratively constructs 
a set of voxels in the 3D region representing the 
trachea. The trachea splits into the right and left 
mainstem bronchi. This split is detected by the 
change in 2D region connectivity of the trachea has 
divided into smaller, child branches. Every child 
branch now serves as the root of a new sub tree, 
and the closed space dilation is recursively applied 
to each of the sub trees. This process continues 
until no new voxels can be added to the airway tree 
region.

 A linked list structure is used to explain the 
airway regions and tree topology. The most apical 
cross section of the trachea is at the head of the 
linked list. Each linked list node contains a pointer 
to the node parent, a list of node children, region 
generation number, the 2D region centroid, and 
cross-sectional area. Branch splits are represent by 
a list node with two or more children nodes. If a list 
node has no children, it signifies a branch endpoint.

EXPERIMENTAL RESULTS

 The sources of data for implementation 
and validation of this algorithm are the images from 
the publicly available Lung TIME database [24]. 
This database contains 148 CT scans. Each scan 
contains a varying number of image slices. On an 
average, 220 images per scan and every image 
have 512 × 512 pixels and 12 bit gray values in HU; 

the resolution of image exist 1.6 pixels per 1mm, 
image spacing 1mm, image thickness 5mm, and 
transversal resolution 0.58 ±0.06 mm. A total number 
of 10 cases are taken into consideration with total 
number of 3262 (average 326) slices.

 The performance of proposed airway 
tree segmentation method is assessed by using 
volumetric CT images of the human chest. The 
assessment of the proposed method eminence 
is made by evaluating airway trees collected with 
the corresponding templates. The templates are 
collected from analyzed CT scans by manual 
marking and filling airway lumen areas in successive 
slices. A skilled radiologist’s help was taken to 
establish the airway segmentation gold standard. 
We first applied the automatic extraction method 
to recognize the airway tree. After the automatic 
extraction, the expert shortened the results to 
remove false identifications and insert missing airway 
regions. Only after the radiologist’s was satisfied with 
the edited results, the 3D connected tree rooted at 
the trachea was extracted by region growing and 
saved for use as the gold standard. This procedure 
was repeated for each of the validation data set.

 The reliability of the segmentation is 
statistically measured by the sensitivity and the 
positive predictive value. The sensitivity describes 
the reliability that bronchi branches are found 
(intersection between segmentation and gold 
standard bronchi branches / gold standard). On 
the contrary, the positive predictive value (PPV) 
describes the accuracy in the existing branches as 
detected by the segmentation pipeline (intersection 
between segmentation and gold standard bronchi 
branches / segmentation branches). Hence, we can 
interpret specificity of the PPV (negative cases are 
sensed as negative) of leaked bronchi branches.

 The proposed segmentation method extract 
bronchi up to the fifth generation the sensitivity is 
more than 85%, up to the sixth generation is 58%, 
and a PPV of more than 90%. Away from the sixth 
generation, the sensitivity is just below 30%, while 
the PPV maintains its high level.

 The following measurements are computed 
and used for comparing the results:
1. Branch count: The number of detected 
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branches is correctly as the length of the 
centerlines is more than 1 mm.

2. Branch detected: The fraction of automatic 
detected branches by the proposed method, 
with respect to the ground truth branches 
present.

3. Tree length: The total length of all correctly 
detected branches.

4. Tree length detected: The fraction of airway 
tree length in the marked ground truth that is 
correctly detected.

5. Leakage count: The number of unrelated 
extraction of ‘correct’ regions that are 
neighboring with a ‘wrong’ region. Indicates 
how difficult / easy it is to physically separate 
leaks from the detected correctly branches.

6. Leakage volume: The volume of extracted 
regions that are detected wrongly.

7. False positive rate: The fraction of the volume 
of extracted regions that are detected wrongly 
over the volume of all detected regions.

 Trachea is excluded from the branch length 
and branch count related measurements. For the 
leakage based measures, both trachea and main 
bronchi are excluded. In Table 1 we have given all the 
computed experimental measures. This algorithm 
produced a fair result; the mean number of branches 
detected is 46.5%, the tree length detected is 
42.33% and the number of false positives is 0.28%. 
The time taken to process a case varied according 
to computer specifications and the number of slices 
containing airways. The mean and standard deviation 
of the time taken to complete each of the 10 cases 

is 35 ± 18 minutes using a MATLAB 2014b on Core 
i7 3.33 GHz PC with 16 GB memory. This time can 
be considerably decreased by converting the code 
from MATLAB to C or another compiled language. 
Fig. 5 shows an example of case 1 and 6 the airway 
trees and superimposed on the lungs parenchyma.

DISCUSSION AND CONCLUSION

 The proposed algorithm is a three-
dimensional approach to the automated lung 
airways segmentation in chest CT scans and 
provides a good basis for CAD airway detection 
system. The fundamental objective of this algorithm 
is to propose a method for airway segmentation 
that will allow radiologists to move away from the 
console working place as well as avoid the need 
for expensive software applications provided by the 
modality vendors. The main features of the algorithm 
are the use of minimum variance threshold and 
morphological operators. The algorithm, tested on 
10 cases high-resolution CT scans, provides high 
performance and segmentation quality, showing 
good accuracy in the airway segmentation, as noted 
in comparison against the gold standard, and also 
through visual inspection done by our radiologists. 
In 60 percent of the cases, it matched with the gold 
standard which is a good outcome. 
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