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ABSTRACT

 Successful therapeutic commercialization requires the demonstration of efficacy and safety 
of a drug during clinical trials, as well as the commercial feasibility of drug production with consistent 
quality. Mitigating risk in these three areas is the key strategy for pharmaceutical development 
success. One of the most effective ways of risk mitigation during therapeutic development is to 
perform drugability assessments of the molecule. Drugability assessment studies facilitate our 
understanding of biotherapeutics, predict clinical outcomes, and provide rationales for molecular 
optimization.  Better understanding of biotherapeutic drugability ensures the manufacturability, safety, 
and efficacy in clinical development. Therefore, drugability assessment is the key for successful 
biotherapeutic commercialization. Here, we reviewed  current literature, and summarized the major 
durability studies of biotherapeutics.
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INTRODUCTION

 Successful therapeutic commercialization 
requires the demonstration of efficacy and safety of 
a drug in clinical trials, as well as the commercially 
feasibility for production of the drug with consistent 
quality. From novel drug discovery to blockbuster 
commercialization, risk mitigation through drugability 
assessment is the key strategy for pharmaceutical 
development success1. The term drugability often 
refers to the accessibility, efficacy, and safety of 
a therapeutic molecule that meets clinical and 

commercial needs2-5. Therefore, the drugability 
assessment of a molecule plays a significant role 
at an early stage of drug discovery. When it is 
performed properly, it can reduce the chance of 
expensive late-stage developmental failure3, 4, 6, 7. 
While many reviews have summarized the drugability 
of chemical therapeutics in literature2, 5, 8-12, few  
summarize biotherapeutic drugability assessment 
from current literature. Therefore, we reviewed 
thecurrent literature, and summarized the durability 
studies of biotherapeutics, particularly those studies 
that involve monoclonal antibodies (Mab).
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Drugability of Biotherapeutics 
 When compared to traditional chemical 
therapeutics, biological drugs show promise in better 
safety, efficacy, specificity, and extended half-life. 
However, the molecular structural complexity of 
biotherapeutics underlies a variety of challenges and 
limitations. Examples of challenges and limitations 
are: long development time, inefficient penetration 
of cell membranes, high cost of manufacturing, 
unwanted immune response, and poor stability13, 14. 
During the early stage of discovery, the drugability 
of a biotherapeutic molecule should be extensively 
evaluated to reduce the chance of late-stage 
developmental failure. Figure 1 shows the primary 
goals to be achieved and major analytical techniques 
that are performed to determine drugability during 
early stages of drug discovery. Manufacturability, 
safety, and efficacy are the three major aspects of 
drugability that need to be addressed in the early 
stages of drug discovery. 

Manufacturability
 Biotherapeutics undergo multiple chemical 
and physical stresses during the manufacturing 
process. These stresses potentially lead to 
modifications of the target protein drug affecting 
its safety and effectiveness15. Manufacturing stress 
induced chemical modifications include oxidation, 
deamidation, peptides bond hydrolysis, etc.; and 
manufacturing stress induced physical modifications 
includes denaturation, precipitation, and aggregation, 

etc.  Some of these induced modifications (e.g., 
aggregation, oxidation, glycosylation) can lead 
to heterogenicity and hence, significant adverse 
effects on the safety, efficacy, and pharmacokinetics/ 
pharmacodynamics (PK/PD) of the biotherapeutic 
drug15, 16 Therefore, a quality assessment of stress 
induced modifications can provide necessary 
understanding of the physiochemical structures 
needed for lead candidates optimization. 

 Recent advances in proteomic techniques 
have enhanced understanding and prediction of 
protein modification resulting from bioprocesses17, 18 

, 19, 20. These technologies provide diverse databases 
and analysis software to provide valuable information 
for controlling manufacturing stress induced protein 
modification17, 18, 21-23. Sequence- or structure-
based bioinformatic prediction tools have been 
applied in recent studies17, 18.  Table 1.1 presents 
the summary of available computational tools for 
structural predictions. Biopharmaceutical companies 
use the In Silico platform to assess stress-induced 
modification tendencies in the molecular structure of 
biotherapeutics. By selecting the optimal candidates 
via the In Silico platform, biotherapeutic molecules 
can be optimized to eliminate potential structural 
liabilities during manufacturing17, 24. Optimized 
candidates are then selected for in vitro analysis 
including safety, yield, preformulation, and biological 
activity17, 24. 

Table 1: Prediction Database for PTMs

Database Source

Scansite http://scansite.mit.edu/
PREDIKIN http://predikin.biosci.uq.edu.au/pkr/
NetPhos http://www.cbs.dtu.dk/services/NetPhos/
NetPhos http://www.cbs.dtu.dk/services/NetPhosK/
Big-PI-prediction http://mendel.imp.ac.at/sat/gpi/gpi_server.html
GlycoMod http://expasy.ch/tools/glycomod/
NetOGlyc http://cbs.dtu.dk/services/NetOGlyc/
NetNGlyc http://cbs.dtu.dk/services/NetNGlyc/
DictyOGlyc http://cbs.dtu.dk/services/DictyOGlyc/
YinOYang http://cbs.dtu.dk/services/YinOYang/
Sulfinator http://www.expasy.org/tools/sulfinator
Oglyc http://www.expasy.org/tools/sulfinator
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Safety 
 Immunogenicity is one of the most 
common side effects for biotherapeutics. While 
the principal cause of the immune response is 
divided, immunogenicity leads to reduced drug 
efficacy, altered drug clearance, and shortened 
plasma half-life of the administered drug25-28. 
Therefore, immunogenicity assessment is one of 
the most important principal safety evaluations for 
biotherapeutics in development26, 28.

 Immunogenic response can be divided 
into T-cell dependent and T-cell independent 
responses. In T-cell independent immunogenic 
response,  B cells bind to the therapeutic protein and 
respond by transiently producing IgM antibodies29. 

In T-cell dependent immunogenic response, the 
complex interplay among antigen presenting cells, 
T cells, secreted cytokines, and B cells occur 
in respond to the administered proteins30. Thus, 
anti-drug antibodies (ADA) are usually generated 
by T-cell dependent immunogenic responses25, 30. 
Immunogenicity is one of the key risk attributes for 
clinical safety, so it is desirable to assess the potential 
immunogenic issues during the early discovery 
stages. A drug molecule should be redesigned if it is 
found to be highly immunogenic. One way to reduce 
the immunogenicity is by removing the T-cell epitopes 
of the biotherapeutic drug24.  It is feasible to predict 
the immunogenicity of the T-cell epitopes based on 
the amino acid sequence from In Silico because 
their core residues are limited to 9–10 amino acids30. 
There are a number of computational tools for T-cell 
epitope prediction and assessment for potential 
immunogenicity evaluations30-32. These In Silico 
predictions are usually followed by in vitro and ex vivo 
cell-based assays validation. Major histocompatibility 
complex/human leukocyte antigen (HLA/MHC) 
binding assays are common cell-based assays used 
to validate the In Silico predictions by measuring 
the affinity of predicted epitope to HLA in vitro30, 

33-35. A series of T cells will then be used to further 
assess the immunogenicity, including cytokine 
response assays, proliferation assays, naïve human 

Table 2: Screening Assay Strategies for 
Immunogenicity 

•         Physiochemical characterization
•         In silico
-         T cell epitope predictions
-         B cell epitope predictions
•         HLA/MHC binding assays
•         T cell responses
•         In vivo models

Table 3: PK Characteristics Comparison of Chemical Therapeutics and Biotherapeutics

Attributes Chemical Therapeutics  Biotherapeutics

Binding Nonspecific Specific
PK/PD PK usually independent of PD; short half life PK usually dependent onPD; 
  long half life;
Dose Linear PK at low doses (usually therapeutic  Nonlinear PK at low doses; 
  linear PK  
Proportionality doses); nonlinear PK athigh doses (after  at high doses aftersaturation 
 saturation of metabolic enzymes) of target  
Distribution High volume of distribution Distribution usually limited to  
  blood and interstitial spaces 
Metabolism Metabolism by cytochrome P450or other  Catabolism by proteolytic 
 phase I/ phase II enzymes degradation
Excretion Typically, biliaryand renal excretion No renal CL of intact antibody.  
Immunogenicity  cleared by damagedkidneys. 
  May be 
  Uncommon if MW >20 kDa 
 Not seen Maybe seen



1596 YUAN et al., Biomed. & Pharmacol. J.,  Vol. 10(4), 1593-1601 (2017)

PBMC response assays etc.30, 33-35. These in vitro 
assays also enable bioprocess related changes to 
be evaluated, such as antibody expression, post-
translational modifications, and formulations etc30. In 
vivo experiments with “humanized” animal models 
are also performed for immunogenicity testing of 
therapeutic candidates to further validate the findings 
in cell-based assays36. The data generated from 
the in vitro and in vivo validation assays provides 
an important assessment to the immunogenicity of 
the biotherapeutic protein to reduce clinical safety  
risks30, 32. 

 Typical screening assay strategies 
for immunogenicity of biopharmaceuticals are 

summarized in Table 2. The data derived from 
these immunogenicity-based assessments can 
be used to prioritize candidates for development 
when multiple candidates are available. These 
assess ments can also be used to optimize 
biopharmaceutical candidates for cost-effective 
drug development and safety improvement via 
molecular redesign. Humanization is commonly used 
to significantly reduce immunogenicity37-39. Moreover,  
physicochemical modification and aggregation 
elimination of therapeutics can also be used to 
reduce immunogenicity40. Other immunogenicity 
reduction strategies such as PEGylation have 
been explored41. However, studies show that anti-
PEG antibodies have been caused by PEGylated 

Fig. 1: Stages of biological drug discovery, primary goals, and major activities

Fig. 2: Factors that impact PK properties of monoclonal antibodies
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biotherapeutics42-46. Nevertheless, immunogenicity 
reducing technologies are a key to mitigating the 
clinical safety risks of biotherapeutic developments. 

Efficacy 
 Efficacy is frequently l inked to the 
pharmacokinetics (PK) of a drug because of the 
direct relationship between efficacy and dosage. 
Special considerations are applied to biotherapeutics 
because of their complex structures47-49. The primary 
PK determinant of a biotherapeutic is their FcRn-
mediated recycling. However, other factors, such as 
glycosylation, and target mediated drug disposition 
(TMDD), and anti-drug antibody (ADA) response 
can also have tremendous influence on its PK47. 
Figure 3 illustrates the general structure of lgG1 
and the factors that influence PK properties.  PK 
data is important to reference during biotherapeutic 
structural optimization to achieve desirable exposure, 
safety, and efficacy profiles47, 49-51. The bioanalytical 
methods used for protein quantification during 
PK studies are mainly based on immunoassay 
methodologies. However, mass spectrometer based 
quantification techniques, including the bottom-up 
and top-down approach, are gaining popularity 
recently due to their advantages in development 
time, specificity, and throughput52, 53. In addition, 
fluorescent or radioactive labeled molecules are also 
frequently used to test absorption and distribution of 
Mab related therapeutics54, 55. The PK characteristics 
of biotherapeutics show differences from that of 
chemical therapeutics (Table 3).  PK data of biologics 
such as Cmax, Area Under Curve (AUC), half-life, 
volume of distribution, and clearance can help 
provide significant insight into their stability in blood, 
potential nonlinearity of PK, as well as target specific 
distribution assessment47, 48, 53. PK data from animal 
studies provides the basis of extrapolation for first-in-
human (FIH) dosage information in clinical studies. 
Linear PK, target-mediated drug disposition (TMDD), 
and physiology-based pharmacokinetic (PBPK) 
models are the most common FIH quantitative 
models used in order to show proper efficacy in 
clinical studies56.

 Linear Pharmacokinetic (PK) Models 
- Protein biotherapeutics exhibit linear PK after 
saturation of target. PK data obtained in preclinical 
animal studies are typically extrapolated by simple 
mathematical models describing mono-exponential, 

bi-exponen tial, or multiexponential profiles observed 
in plasma or serum exposure. By using allomeric 
scaling techniques, intended dosage for human 
exposure  predicted57.

 Target-Mediated Drug Disposition (TMDD) 
Models – TMDD is applied when a significant fraction 
of a drug binds to its pharmacological target with 
high affinity such that this interaction influences 
the distribution and elimination of the drug58. A 
well-developed TMDD model can help predict drug-
related (e.g., drug elimination and distributional 
rate constants) and target-related (e.g., receptor 
expression) parameters, and estimate the in vivo 
receptor occupancy56, 58.

 Physiology-based pharmacokinetic (PBPK) 
models - PBPK models describe physiological 
characteristics such as lymph flow, organ distribution, 
FcRn binding, and relationships with serum and 
tissue.  In PBPK models, physiological parameters 
and the ADME data are integrated to represent a 
quantitative framework for mechanistic translation 
across species. This approach provides a starting 
point to evaluate the impact of drug-dependent 
properties and system-dependent properties on 
human PK profiles of biotherapeutics56, 59-61. Although 
it was first developed for chemical therapeutics, 
PBPK models have been extensively applied to 
biotherapeutics59-61.

Summary
 Drugability of biotherapeutics is an integral 
concept in drug discovery. It involves the analyzation 
of a biological drugs’ structural and physicochemical 
properties, biological activity, pharmokinetics and 
toxicity. Drugability assessment studies facilitate 
our understanding of biotherapeutics, predict clinical 
outcomes, and provide rationales for molecular 
optimization. Nevertheless, many studies, such as 
PK drivers of efficacy and toxicity, immunogenicity 
response, PK extrapolation to humans, and 
exposure–response relationships in patients etc, are 
currently in progress to gain better understanding 
of biotherapeutic drugability in order to ensure the 
manufacturability, safety, and efficacy in clinical 
development. With new advances in modern 
biotechnology, drugability assessments are the key 
for successful biotherapeutic commercialization.  
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