Topography prediction and motifs identification of bicycloclycin resistance protein of *Ehrlichia canis* strain Bangkok

DANAI PINYOOWONG¹, SATHAPORN JITTAPALAPONG², SURIN PEYACHOKNAGUL¹ and ARINTHIP THAMCHAIPENET*¹

¹Department of Genetics, Faculty of Science, Kasetsart University, Chatuchak, Bangkok 10900, Thailand,
²Department of Parasitology, Faculty of Veterinary Medicine, Kasetsart University, Chatuchak, Bangkok 10900, Thailand.

(Received: June 22, 2008; Accepted: August 14, 2008)

ABSTRACT

Bicycloclycin resistance gene from *E. canis* strain Bangkok was isolated by polymerase chain reaction using primers designed from the genome sequence of *E. canis* strain Jake. The hypothetical Bcr protein was analysed and revealed close relationship with those of drug resistance transporter Bcr/CflA subfamily from bacteria in order Rickettsiales. Topology prediction using hidden Markov model algorithms indicated that the *E. canis* strain Bangkok Bcr protein was an 11-transmembrane segment protein with N-terminal out of cell and C-terminal in the cytoplasm. It contained special motifs conserved in drug transporters belonging to major facilitator superfamily (MFS). Phylogenetic analysis showed that hypothetical Bcr proteins of rickettsia species were segregated from the 12-TMS proteins and were likely to represent a new member of MFS.

Key words: *E. canis* strain Bangkok, bicycloclycin, drug resistance transporter Bcr/CflA subfamily, major facilitator superfamily (MFS).

INTRODUCTION

Canine monocytic ehrlichiosis (CME) is a tick-borne disease caused by *Ehrlichia canis*. This bacterium is obligate intracellular Gram-negative bacteria in order Rickettsiales¹. CME is an important fatal tick-borne disease that can spread worldwide and clinical data on the treatment of these are limited²,³,⁴. *E. canis* was considered highly resistant organisms and drug of choice to treat CME is doxycycline⁵. In Thailand CME could be considered as a serious problem for tick-transmitted infection agents²,⁶,⁷.

Mavromatis et al.⁸ determined a large set of proteins with transmembrane helices that associated with pathogen-host interaction from the complete genome sequences of *E. canis* strain Jake. One of the genes found in this genome was bicycloclycin resistance (*bcr*) gene, a drug resistance transporter Bcr/CflA subfamily, that involved in pathogenicity⁹. Bicycloclycin is an antibiotic against a broad spectrum of Gram-negative and Gram-positive bacteria. The target of bicycloclycin is rho transcription terminating factor⁹. The drug resistance transporter Bcr/CflA proteins are known as transmembrane protein efflux systems.
belonging to the class of the major facilitator superfamily (MFS)10,11,12. Members with known activity include Bcr from \textit{Escherichia coli}13, Blt from \textit{Bacillus subtilis}14 and Nor A from \textit{Staphylococcus aureus}15.

Transmembrane proteins are difficult to work with experimentally and very few structures have been demonstrated to date because the difficulties of expression and crystallisation16. Alternative approaches to studying these proteins such as computational methods in particular, have been focused of much research in recent years17,18,19. The topology can be predicted by methods that use physiochemical properties, such as hydrophobicity or charge20,21, by model-based methods, such as hidden Markov models (HMMs)17 and neural networks22 or using methods based on the consensus approach23.

![Fig. 1: The elucidation of the topology of the E. canis strain Bangkok Bcr protein. (A) Hydropathy analysis by TMHMM. The probability score for transmembrane helical regions are shown as vertical lines with the amino acid position of the ends of the predicted helices given above the bars at the top. (B) Topological model by ConPredII. Hypothetical transmembrane segments are indicated in boxes.](image-url)
Table 1

<table>
<thead>
<tr>
<th>Species</th>
<th>Amino Acid Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>M. senpoku</td>
<td>LTVTPQDKKEKAFAS-----LRLGNLVRATKSYVLSATYITMLHMLWIVSIA 229</td>
</tr>
<tr>
<td>O. Boryong</td>
<td>LTVTPQDKKEKAFAS-----FNLK669EKNALTNRQCYCL11STELFLLYADSLAS 234</td>
</tr>
<tr>
<td>O. Ikeda</td>
<td>LTVTPQDKKEKAFAS-----FNLK669EKNALTNRQCYCL11STELFLLYADSLAS 234</td>
</tr>
</tbody>
</table>

Fig. 2: Multiple-sequence alignments of the drug resistance transporter Bcr/CflA subfamily from the order Rickettsiales. Grey background for identity 70-100%.

The consensus of motifs A, B and C were defined from conserved amino acid with an identity over 80%. The predicted transmembrane segments (TMS) are squared.

The table and figure are provided as they appear in the original document, with the amino acid sequences aligned and the consensus motifs defined for the drug resistance transporter Bcr/CflA subfamily from the order Rickettsiales. The figure includes a visual representation of the alignments, highlighting the areas where identity is 70-100%.

In this study, we cloned a gene encoding hypothetical bicyclomycin resistance protein (Bcr) from *E. canis* strain Bangkok. This is the first report to predict topology of the drug resistance transporter Bcr/CflA protein of *E. canis*. Specific motif signatures for the transmembrane protein are also proposed.

MATERIAL AND METHODS

Bcr gene amplification, cloning and sequencing

DNA isolated from dog blood was prepared as previously described (7). Primers for *bcr* gene amplification were designed from genome sequence database of *E. canis* strain Jake (YP303315), namely ATT069F (5’ AGCTCATATGTGTGATATGTCTTCTGATA 3’) and ATT069R (5’ AGCTGGATCCATAAAGCTACCCTAAGTTCC 3’). *NdeI* and *BamHI* restriction sites were added (underlined) for future expression purpose. PCR amplification was generated using both primers in a Peltier thermal cycler (MJ Research, Watertown, MA, USA), by 30 cycles of 30 s at 94.0°C, 30 s at 58.0°C, and 1 min at 72.0°C, preceded by 4 min at 94.0°C and followed by 4 min at 72.0°C. The amplicon was purified using QIAquick PCR purification kits (QIAGEN) according to the manufacturer’s protocol. The PCR product was ligated into pGEM-T easy (Promega) and transformed into *Escherichia coli* DH5α. The recombinant plasmid was sequenced using both PCR primers, ATT069F and ATT069R.

Motif and topology prediction

Protein signal sequence peptide was predicted using SignalP24. Transmembrane protein topological structures were analyzed using ConPredII23, HMMTOP25, SOSUI26, TMHMM27, and TMMOD28. Motifs were predicted using program MAFFT29.

![Fig. 3: Unrooted phylogenetic tree of the drug resistance transporter Bcr/CflA subfamily from 14 rickettsia species and 10 of 12-transmembrane proteins of major facilitator superfamily (see text for details)](image.png)
Phylogenetic tree construction

Amino acid sequences comparing in this study were aligned using CLUSTALW version 1.83 XP (30). The software package PHYLIP 3.63 was used for phylogenetic analysis. The Protdist program with Jones-Taylor-Thornton matrix was used to generate a distance matrix. Seqboot, Neighbor and Consense programs were used to statistically assess the tree using bootstrap resampling. A bootstrap resampling technique of 1,000 replications were performed to statistically support the reliability of the node on the trees.

RESULTS AND DISCUSSION

Cloning and sequencing of bcr gene from E. canis strain Bangkok

To study and identify antibiotic resistance gene from uncultured or difficult to culture bacteria such as *Ehrlichia* spp. are problematical and to date culture of *Ehrlichia* is limited (31). However, the technique that may use to identify these genes is polymerase chain reaction (PCR). Putative bicyclomycin resistance gene (*bcr*) from *E. canis* strain Bangkok was amplified by PCR using specific primers, ATT069F and ATT069R. The 1.1 kb PCR product was obtained (data not shown) and successfully cloned into pGEM-T easy vector. Sequence analysis showed that this gene consists of 1058 bases encoding a protein of 386 amino acids. The protein was predicted a mass of 42.45 kDa. This sequence was deposited under accession number EU880584 in the GenBank database as a new bicyclomycin resistance gene.

Topology prediction of the Bcr protein

Bcr amino acid sequence of *E. canis* strain Bangkok was analysed by BlastP and revealed sequence similarity to those of drug resistance transporter Bcr/CfrA subfamily sequences from organisms in order *Rickettsiales*. The results indicated that Bcr amino acid sequence of *E. canis* strain Bangkok was very close to that of *E. canis* strain Jake (YP303315) with 99 % identity. It showed close relationship with 84-89 % similarity to those of genus *Wolbachia* including *Wolbachia pipiens* (CAQ55329), *Wolbachia* endosymbiiont of *Drosophila willistoni* (ZP01314869), *Wolbachia* endosymbiiont of *Drosophila melanogaster* (NP966176) and *Wolbachia* endosymbiiont strain TRS of *Brugia malayi* (YP198034). It shared 59 % similarity with that of *Neorickettsia sennetsu* strain Miyayama (YP505965) and 53 % with *Orientia tsutsugamushi* strain Boryong (YP505965), and *Orientia tsutsugamushi* strain Ikeda (YP00193729).

These types of drug efflux proteins belonged to major facilitator superfamily (MSF) (10, 11, 12). Hydropathy and phylogenetic analyses of several MSF revealed that they shared a common structure and could be divided into 12 and 14 transmembrane segments (TMS) (10, 11, 12). To determine the *E. canis* strain Bangkok Bcr protein belonging to MFS, the amino acid sequence was first scanned for the presence of signal peptide sequences using SignalP program. It is important to identify the signal peptide prior to analysis of transmembrane type of proteins because these leader peptides that target a protein for export contain a hydrophobic region that can easily be mistaken for a transmembrane region by a prediction program (17). The result revealed that there was no such leader peptide sequence located at the N-terminal of the Bcr protein. The Bcr amino acid sequence of *E. canis* strain Bangkok was then predicted the hydrophobic profiles and TMS using five different computer programs; SOSUI, ConPredII, HMMPHOP, TMHMM, and TMOD. The results obtained from ConPredII, HMMPHOP, TMHMM and TMOD identified the *E. canis* strain Bangkok Bcr protein as an 11-TMS with N-terminal out of cell and C-terminal in the cytoplasm (Fig. 1A and B). The *E. canis* strain Bangkok Bcr protein contained 59.84 % hydrophobic amino acids, 13 charged residues inside, 2 charged residue outside. Eleven TMSs from TMHMM were found between residues 26-48, 60-82, 86-103, 116-138, 144-166, 191-213, 228-250, 262-284, 294-316, 323-345 and 350-372 (Fig. 1A). Each position of 11 TMSs was in approximately the same positions as predicted by the four programs. In contrast, SOSUI predicted this
protein as 12-TMS, with the N and C termini of the protein located in the cytoplasm. SOSUI has been originally developed to predict TM alpha-helices by using hydropathy plot model to distinguish between transmembrane and soluble proteins18. However, HMMTOP, TMHMM and TMMOD employed hidden Markov models (HMMs) for more accurate topology prediction. Like hydropathy plot and neural network methods, they compute both sequence to structure and structure to structure relationships. The differences are that in HMMs the two steps are joining together into one integrated model19. On the basis of the HMMs analysis we, therefore, regard the eleven membrane-span model as the most likely for the E. canis strain Bangkok Bcr protein.

Signature motif prediction and phylogenetic relationship:

Since the E. canis strain Bangkok Bcr protein was predicted as 11-TMS, all of those 13 drug resistance transporters in order Rickettsiales were then subjected to HMMTOP, TMHMM and TMMOD to analyse the transmembrane profiles. The results indicated that they were 11-TMS (data not shown). 11-TMS proteins from 14 species in order Rickettsiales were multiple aligned (Fig. 2). The sequences were scanned for the presence of MFS transporter family signature motifs A (GxLaDrxGrxkxxxL), B (lxxxRxxqGxGaa) and C (gxxxGPxxGGxI)10, 11 using the program MAFFT. Motif A was found as GPLSDxyGrpXM, located in the cytoplasmic loop between TMS 1 and 2, motif B was found as LxRxRFlQGxGAG located within TMS 3, and motif C was conserved as SPxx[GA][VI]xxGSxI found within TMS 4 of all 14 proteins (Fig. 2; residues in bold indicate those conserved in the MFS signature motifs). These signature motifs are typical characters of both 12-TMS and 14-TMS families of the MSF10, 11 indicated that E. canis strain Bangkok Bcr protein and those of rickettsia species were membrane transporters belonging to MSF. However, motifs D2 and G specific for 12-TMS family, and motifs D1, H, E and F specific for 14-TMS family, could not be identified in 11-TMS family of drug transporters of rickettsias. It could, therefore, be suggested that transporters with a number of TMS smaller than 12 may be also involved in drug transport and these 14 proteins may represent a new 11-TMS family. With highly conserved sequences of motifs A, B and C has allowed us to define more precisely the sequence motif A (GPLSDxyGrpXM), motif B (LxRxRFlQGxGAG) and motif C (SPxx[GA][VI]xxGSxI) specifically for the drug efflux proteins of *Ehrlichia* and the closely related genera *Anaplasma, Neorickettsia, Orientia* and *Wolbachia*. These signatures will be very useful for identification of a new member of the drug transporters of the 11-TMS family from other rickettsia species.

From BlastP analysis, the *E. canis* strain Bangkok Bcr protein showed higher similarity to those of 12-TMS family than 14-TMS family of MFS. The amino acid sequence of the *E. canis* strain Bangkok Bcr protein was then compared with those of 10 proteins of 12-TMS family including Bcr from *Escherichia coli* (X63703), Blt from *Bacillus subtilis* (L32599), Bmr from *B. subtilis* (M33768), Cmr from *Corynebacterium glutamicum* (U43535), EmrD from *E. coli* (P31442), LmrP from *Lactococcus lactis* (X89779), MdfA(Cmr/CmlA) from *E. coli* (Y08743), NorA from *Staphylococcus aureus* (D90119), PmrA from *Streptococcus pneumoniae* (AJ007367) and Tap from *Mycobacterium fortuitum* (AJ000283). The *E. canis* strain Bangkok Bcr protein shared much lower similarity (27-48 %) with these 12-TMS family than those of rickettsia species. The conserved of motifs A, B and C were also detected around N-terminal half of the proteins but lower similarity was observed at the C-terminal half (data not shown). It was previously proposed that N-terminal region of MFS proteins involved primarily in proton translocation, whereas, C-terminal half involved primarily in substrate recognition (10). An unrooted phylogenetic tree was generated from 14 drug transporters of 11-TMS of rickettsia species and 10 proteins of 12-TMS family. The members of our 11-TMS family were segregated from the 12-TMS family and grouped relatively tight in their own branch (Fig. 3). The results supported that the proposed 11-TMS family of *Ehrlichia, Anaplasma, Neorickettsia, Orientia* and *Wolbachia* were likely to represent a new family of MSF.

ACKNOWLEDGEMENTS

This research is supported by the Graduate School, Kasetsart University.
REFERENCES