Emergence of Antibiotic Resistance Nano Enzyme in *Staphylococcus* species Isolated from Clinical, Biotic and Abiotic Conditions

SHILA JALALPOUR 1*, ROOHA KASRA KERMANSHAHI 2 and HAMID ZARKESH-ESFAHANI 3

1Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran.
2Professor of Microbiology, Department of Biology, Faculty of Sciences, Alzahra University, Tehran, Iran.
3Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, Iran.
E-mail: shilla.jalalpoor@yahoo.com

(Received: September 21, 2011; Accepted: November 13, 2011)

ABSTRACT

Health care workers and hospital surfaces have important role in nosocomial infection, if resistance strain transfer to hospitalized patients, led to spread of antibiotic nosocomial infections. The research was laboratory and performed during 2005/2007 years in Azzahrahospital in Isfahan. According to statistical formula study on 147 *Staphylococcus* species isolated from clinical samples, skin hands of health care workers and hospital surfaces. Bacterial identification, were performed with microbiological methods and beta lactamase product was performed with Acidometric method. According to Acidometric result 100% and 50% of *S. aureus* and *S. epidermidis* isolated from clinical samples and 75% and 66.6% of *S. aureus* and *S. epidermidis* isolated from skin hands of health care worker and 84.6%, 70.45% and 75% of *S. aureus*, *S. epidermidis* and *S. saprophyticus* isolated from hospital surfaces can produce beta lactamase Nano enzyme. Result demonstrate high prevalence of resistance antibiotics *Staphylococcus* spp. isolated from clinical, biotic and abiotic conditions in hospital. One of reason creative antibiotic resistant in bacteria is increase contact of sensitive bacteria with resistance strains.

Key words: *Staphylococcus aureus*, *S. epidermidis*, *S. saprophyticus*, Antibiotic Resistance, Beta lactamase Nano Enzyme.

INTRODUCTION

Antibiotic resistance is a consequence of evolution via natural selection or programmed evolution. The antibiotic action is an environmental pressure; those bacteria which have a mutation allowing them to survive will live on to reproduce. They will then pass this trait to their offspring, which will be a fully resistant generation (Jalalpoor et al., 2007, Keith, 2005, Kim et al., 2000, Madani, 2009, Mielke, 2010). Several studies have demonstrated that patterns of antibiotic usage greatly. The several main mechanisms by which micro-organisms exhibit resistance to antimicrobials are: Drug inactivation or modification: e.g. enzymatic deactivation of Penicillin G in some penicillin resistant bacteria through the production of beta lactamases (Jalalpoor et al 2007). Beta lactam antibiotics are typically used to treat a broad spectrum of Gram-positive and Gram-negative bacteria. Beta-lactamases produced by Gram-negative organisms are usually secreted. Betalactamases are enzymes produced by some bacteria and are responsible for their resistance to beta-lactam antibiotics like penicillins, cephamycins, and carbapenems (ertapenem). (Cephalosporins are relatively resistant to beta lactamase.) These antibiotics have a common element in their molecular structure: a four-atom ring known as a beta-lactam (George, 2005, Jalalpoor et al 2007, Mendelsonetal, 2005, Paterson etal, 2004). The beta lactamase enzyme breaks that ring open, deactivating the molecule’s antibacterial properties. Penicillinase is a specific type of beta lactamase, showing specificity for penicillins, again by hydrolysing the beta-lactam ring. Molecular weights of the various penicillinases tend to cluster near 50kDN (George, 2005,
Penicillinase was the first beta-lactamase to be identified: it was first isolated by Abraham and Chain in 1940 from Gram-negative E. coli even before penicillin entered clinical use but penicillinase production quickly spread to bacteria that previously did not produce it or only produced it rarely. Penicillinase-resistant beta-lactams such as methicillin were developed, but there is now widespread resistance to even these (George, 2005, Mendelson et al., 2005, Paterson et al., 2004). Nosocomial infections (NIs) remain a major global concern. Overall national prevalence rates have been described as ranging between 3.5 and 9.9%. They lead to additional days of treatment, increase the risk of death and increase treatment costs. Staff hands and hospital surfaces have important role in NIs (Boyce et al., 2002; Ducel et al., 2002; Johnson 2006; Kampf et al., 2004; Stone et al., 2002). The health-care environment contains a diverse population of microorganisms. Microorganisms are present in great numbers in moist, organic environments, but some also can persist under dry conditions. Environmental source or means of transmission of infectious agents, the presence of the pathogen does not establish its causal role; its transmission from source to host could be through indirect means, e.g., via hand transferred. The surface would be considered one of a number of potential reservoirs for the pathogen, but not the de facto source of exposure. An understanding of how infection occurs after exposure, 4 based on the principles of the chain of infection is also important in evaluating the contribution of the environment to health-care-associated disease. All of the components of the chain must be operational for infection to occur: 1. Adequate number of pathogenic organisms (dose) 2. Pathogenic organisms of sufficient virulence 3. A susceptible host 4. An appropriate mode of transmission or transferal of the organism in sufficient number from source to host 5. The correct portal of entry into the host. Although microbiologically contaminated surfaces can serve as reservoirs of potential pathogens, these surfaces generally are not directly associated with transmission of infections to either staff or patients. The transferal of microorganisms from environmental surfaces to patients is largely via contact hands of staff with the surface (Boyce et al., 2002; Ducel et al., 2002; Johnson 2006; Jalalpoor et al., 2007; Kampf et al., 2004; Sehulster and Raymond, 2003; Stone et al., 2002). S. aureus is the most common gram-positive bacterium causing nosocomial infections (NIs) (Mayon et al. 1988; Steinbrecher et al., 2000). Its frequency among all pathogens in NIs varies between 11.1 and 17.2% (Ruden et al., 1995; Sartor et al., 1995; Wagner et al., 1997). Methicillin resistance in S. aureus (MRSA) is increasing worldwide (Schmitz et al., 1999) leading not only to NIs but recently also to community-acquired infection. Colonization of health care workers’ hands with S. aureus has been described to range between 10.5 and 78.3%. Up to 24,000,000 cells can be found per hand (Ayliffe et al., 1988). The colonization rate with S. aureus was higher among doctors (36%) than among nurses (18%), as was the bacterial density of S. aureus on the hands (21 and 5%, respectively, with more than 1,000 CFU per hand) (Daschner et al., 1985). The carrier rate may be up to 28% if the healthcare worker contacts patients with an atopic dermatitis which is colonized by S. aureus (Williams et al. 1999). MRSA has been isolated from the hands of up to 16.9% of health care workers. VRE can be found on the hands of up to 41% of health care workers. Hand carriage of pathogens such as S. aureus, MRSA, or S. epidermidis has repeatedly been associated with different types of NI (Hilton et al., 2002). S. aureus can survive on hands for at least 150 min. On inanimate surfaces, S. aureus and MRSA may survive for 7 months, with wild strains surviving longer than laboratory strains. The long survival of surfaces, together with the relatively short survival on hands, suggests that contaminated surfaces may well be the source of transient colonization despite negative hand cultures. Subject of this paper was survey prevalence of beta lactamase Nano enzyme in Staphylococcus species isolated from clinical samples, skin hands of health care workers and hospital surfaces of Azzahra hospital in Iran.

**MATERIALS AND METHODS**

**Sampling**

A total of 147 *Staphylococcus* spp., 14 species from clinical samples, 105 species from hospital surfaces and 28 species from skin hands
of health care worker were isolated of Azzahrahospital during of 2005-2007 years ((Jalalpoor et al 2007, 2009a-e, Sehulster and Raymond, 2003, Washington et al., 2006). Clinical sample were randomly collected, hospital surfaces samples were collected from high and low hospital contact surfaces with swab (Effective sampling of surfaces requires moistened swabs) in Tryptone Soya Agar (Merck) and skin hands of health care worker samples, were randomly collected from staff hand in Blood Agar (Merck) via Fingerprint Technique (Jalalpour and Ebadi 2010c., Sehulster and Raymond, 2003).

Bacterial strains

Identification bacteria were performed with microbiological methods e.g Gram stains, and biochemical tests with the BioMerieux database system and use of differential medium. Specimen grows on sheep blood and EMB agars incubated at 37°C under aerobic conditions (Jalalpoor et al., 2007,Washington et al., 2006).

Beta Lactamase Nano Enzyme Detection

Acidimetric test is a Diagnostic test for the rapid detection of the beta-lactamase in bacteria. This test is based on hydrolysis of the beta-lactam ring, which results in the production of penicilloic acid. This process causes acidification of the bacterial suspension, and changes the colour of the acid basic indicator phenol red. The red color of this indicator is present negative test and The yellow color of this indicator is present positive test(Jalalpoor et al 2007) (Fig 1).

RESULTS

According to result of present study frequency of S. aureus and S. epidermidis in clinical samples were 12% and 2%, frequency of S. aureus and S. epidermidis skin hands of health care worker were 5% and 30% and in hospital surfaces frequency of S. aureus, S. epidermidis and S.
saprophyticus were 6.7%, 45% and 2% respectively (Fig 2). According to Acidimetric result 100% and 50% of S. aureus and S. epidermidis isolated from clinical samples and 75% and 66.6% of S. aureus and S. epidermidis isolated from skin hands of health care worker and 84.6%, 70.45% and 75% of S. aureus, S. epidermidis and S. saprophyticus isolated from hospital surfaces can produce Beta Lactamase (Fig 3).

CONCLUSION

According result previous study in Iranian hospital, Staphylococcus spp. consist of isolated bacteria from hospital surfaces and 28 consist of isolated bacteria from hands of staff and according to Acidimetric test results respectively 73 species of Staphylococcus isolated from hospital surfaces and 19 species of Staphylococcus isolated from hands of staff was resistance to beta lactame antibiotics (Jalalpoor et al 2007). According previous study 83.33% of Staphylococcus spp. isolated from nosocomial infection in Iran was resistance to beta lactame antibiotics (Jalalpoor et al 2007). According result another study in Iran, 61.9% of bacteria isolated from biotic condition in hospital was resistance to beta lactame antibiotics, respectively was in Staphylococcus spp., Bacillus spp. and Enterobacteriaceae 71%, 64.72% and 50%, According another study in Iran 77.94% of Bacteria isolated from abiotic condition in hospital was resistance to beta lactame antibiotics, respectively was in Staphylococcus spp., Bacillus spp. and Enterobacteriaceae 82.7%, 68.4% and 80.35% (Jalalpoor et al 2007). Antibiotic resistance is an important tool for genetic engineering. By constructing a plasmid which contains an antibiotic resistance gene as well as the gene being engineered or expressed, a researcher can ensure that when bacteria replicate, only the copies which carry along the plasmid survive. This ensures that the gene being manipulated passes along when the bacteria replicates, the most commonly used antibiotics in genetic engineering are generally “older” antibiotics which have largely fallen out of use in clinical practice. These include: ampicillin, kanamycin, tetracycline and chloramphenicol (Boyce et al., 2002; Jalalpoor et al., 2007; Sehulster et al., 2003). Industrially the use of antibiotic resistance is disfavored since maintaining bacterial cultures would require feeding them large quantities of antibiotics. Instead, the use of auxotrophic bacterial strains (and function-replacement plasmids) is preferred. Environmental surfaces carry the least risk of disease transmission and can be safely decontaminated using less rigorous methods than those used on medical instruments and devices. Isolation precautions are designed to prevent transmission of microorganisms by common routes in hospitals. Because agent and host factors are more difficult to control, interruption of transfer of microorganisms is directed primarily at transmission (Boyce et al., 2002; Jalalpoor et al., 2007; Sehulster et al., 2003). Approximately one third of nosocomial infections are preventable. Cleaning is the necessary first step of any sterilization or

Fig. 3. Frequence of Beta lactamase Nano Enzyme in Staphylococcus spp.
disinfection process. Cleaning is removing organic matter, salts, and visible soils, all of which interfere with microbial inactivation (Madani et al., 2009, Mielke, 2010, Rosenthal et al., 2010a, b, Victor et al., 2010).

ACKNOWLEDGMENTS

This article was written according to the thesis “Study Production of b-lactamase and Surface layer, Nano Structure in some of Isolated Pathogen Bacteria from Clinical and Environmental Hospital Samples” No QR66N1, Science and Research Branch, Islamic Azad University, Tehran, Iran. This thesis has been introduced as the top country, microbiology thesis in 2009 defended among the defended thesis during of 2004 to 2008 years in Islamic Republic of Iran.

Author would like their subspecialty Alzahra Hospital Management, Isfahan University of Medical Science, Isfahan University, Management of science research lab of Isfahan university, journals manager of Isfahan University of Medical Sciences, Azzahra Hospital Infection control committee, Dr Rooha Kasra Kermanshahi, Dr Ashraf Sadat Noohi, Dr Hamid Zarkesh Esfahani, Dr Ardeshir Talebi, Dr Mehrdad Memarzadeh, Dr Kamyar Mostafavizadeh, Sinai Mobasherizadeh, Fariborz Kianpour, Mohsen Hosseini Balam, Ms. Kobra Maqhsudi, Mr Ali Mehrabi and all persons help us in concert to achieve this research.

REFERENCES


