Management of Major Obstetric Haemorrhage Using ROTEM Point-of-Care Haemostasis Analysers Can Reduce Blood Product Usage Without Increasing Fibrinogen Replacement Therapy
Beatrice O. Ondondo

Cardiff Metropolitan University, Llandaff Campus, 200 Western Ave, Cardiff CF5 2YB, United Kingdom.

Corresponding Author E-mail:

Abstract: Major obstetric haemorrhage (MOH) is a leading cause of maternal death and morbidity, with the majority of deaths occurring within four hours of delivery. Therefore, prompt identification of women at risk of MOH is crucial for the rapid assessment and management of blood loss to urgently restore haemodynamic stability. Furthermore, as the rate of blood loss during MOH can increase rapidly in the time when laboratory results are awaited, the management of MOH could benefit from point-of-care coagulation testing by the ROTEM analyser which has a quicker turnaround time compared to standard laboratory coagulation tests. A number of studies indicate that ROTEM-based management of MOH has resulted in a significant reduction in massive transfusions and decreased transfusion of concentrated red cells (CRC) and fresh frozen plasma (FFP) due to a reduction in total blood loss. Several reports which have linked MOH to the depletion of fibrinogen reserves indicate that the reduction in CRC and FFP transfusions is largely due to an increase in early fibrinogen replacement therapy which corrects hypofibrinogenemia. This short report discusses preliminary findings on the impact of ROTEM point-of-care haemostasis analyser on the transfusion of various blood products to obstetric women experiencing MOH at the Royal Gwent Hospital in South wales. The number of blood products transfused following decisions based on the ROTEM analyser measurements (ROTEM group) was compared to historical transfusion data before the ROTEM analyser became available (Pre-ROTEM group). Blood product transfusion in the Pre-ROTEM group was guided by measurements of standard laboratory coagulation tests in conjunction with the established major haemorrhage protocols at the time. The findings indicate that the ROTEM analyser was effective in managing MOH at point-of-care and led to a reduction in the transfusion of CRC, FFP and platelets. However, contrary to published studies, the reduction in blood product usage was not accompanied by an increase in fibrinogen replacement transfusion therapy, suggesting that the ROTEM’s FIBTEM assay accurately quantified fibrinogen levels based on fibrin-clot firmness to enable an early diagnosis of hypofibrinogenemia. Early establishment of the absence of hypofibrinogenemia helped to prevent unnecessary transfusion of fibrinogen concentrate in this study. These findings support the adoption of routine use of ROTEM analysers at point-of-care on labour wards to manage MOH and reduce fibrinogen replacement therapy. The ease of use and rapidity of ROTEM tests could enable departure from globally directed correction of coagulopathy during MOH to a more focussed and precise target transfusion therapy, which will ultimately reduce blood product wastage (including fibrinogen concentrate) whilst minimising transfusion-associated side effects such as alloimmunisation, circulatory overload and dilutional coagulopathy.

Keywords: Fibrinogen Concentrate; Haemostasis; Major Obstetric Haemorrhage; Point-of-Care; ROTEM; Transfusion Therapy

[ HTML Full Text]

Back to TOC