Osseointegration of A Bioactive Implant in Extramedullary Osteosynthesis
Arnold V. Popkov, Dimitry A. Popkov, Natalia A. Kononovich and Elena N. Gorbach

Russian Ilizarov Scientific Center for Restorative Traumatology and Orthopedics Ministry of Health of the Russian Federation 640014, M.Ulyanova Street 6, Kurgan, Kurgan region, Russian Federation.

Abstract: The purpose of the study is providing rationale for the optimal type and structure of an extramedullary implant to achieve its rapid osseointegration and, consequently, to reduce the time required for bone fracture union. In an experimental study on 10 mongrel dogs, extramedullary osteosynthesis of tibia was done with 1.0 mm thick titanium alloy (Ti6Al 4V) plates having either solid or perforated structure, and the osseointegration process was compared in animals with an implant with no bioactive coating with those with hydroxyapatite (HA) on the implant surface. The plates were fixed to the tibia under the periosteum. Radiological, anatomical and histological studies demonstrated that the process of osseointegration of a perforated implant with a bioactive coating actively begins at Days 7-14 first with formation of granulation tissue and then followed by formation of fibrous connective tissue, so by Day 28 the entire implant area is covered with tissue substrate, having the signs of osteogenesis, which connects an extramedullary implant and bone surface into a single implant-tissue segment. Fixation of perforated implants with a bioactive coating under the periosteum stimulates reparative osteogenesis and rapid implant osseointegration to achieve consolidation of bone fragments based on the principle of the primary bone union.

Keywords: Extramedullary osteosynthesis; hydroxyapatite coating; osseointegration; additive technology

[ HTML Full Text]

Back to TOC